Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(12): 123706, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599590

ABSTRACT

Spin-polarized scanning tunneling microscopy (SP-STM) measures magnetoresistance with atomic resolution. While various methods for achieving SP probes have been developed, each is limited with respect to fabrication, performance, and operating conditions. In this study, we present the fabrication and use of SP-STM tips made from commercially available antiferromagnetic Mn88Ni12 foils. The tips are intrinsically SP, which is attractive for exploring magnetic phenomena in the zero field limit. The tip material is relatively ductile, is straightforward to etch, and has a Néel temperature exceeding 300 K. We benchmark the topographic and spectroscopic performance of our tips and demonstrate their spin sensitivity by measuring the two-state switching of holmium single atom magnets on MgO/Ag(100).

2.
Phys Rev Lett ; 121(25): 257202, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608837

ABSTRACT

We report on the magnetic properties of HoCo dimers as a model system for the smallest intermetallic compound of a lanthanide and a transition metal atom. The dimers are adsorbed on ultrathin MgO(100) films grown on Ag(100). New for 4f elements, we detect inelastic excitations with scanning tunneling spectroscopy and prove their magnetic origin by applying an external magnetic field. In combination with density functional theory and spin Hamiltonian analysis, we determine the magnetic level distribution, as well as sign and magnitude of the exchange interaction between the two atoms. In contrast to typical 4f-3d bulk compounds, we find ferromagnetic coupling in the dimer.

3.
Phys Rev Lett ; 113(17): 177201, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25379935

ABSTRACT

We determine the magnetic properties of individual Co atoms adsorbed on graphene (G) with x-ray absorption spectroscopy and magnetic circular dichroism. The magnetic ground state of Co adatoms strongly depends on the choice of the metal substrate on which graphene is grown. Cobalt atoms on G/Ru(0001) feature exceptionally large orbital and spin moments, as well as an out-of-plane easy axis with large magnetic anisotropy. Conversely, the magnetic moments are strongly reduced for Co/G/Ir(111), and the magnetization is of the easy-plane type. We demonstrate how the Co magnetic properties, which ultimately depend on the degree of hybridization between the Co 3d orbitals and graphene π bands, can be tailored through the strength of the graphene-substrate coupling.

4.
J Phys Condens Matter ; 24(31): 314203, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22820450

ABSTRACT

We compare different growth methods with the aim of optimizing the long-range order of a graphene layer grown on Ru(0001). Combining chemical vapor deposition with carbon loading and segregation of the surface layer leads to autocorrelation lengths of 240 Å. We present several routes to band gap and charge carrier mobility engineering for the example of graphene on Ir(111). Ir cluster superlattices self-assembled onto the graphene moiré pattern produce a strong renormalization of the electron group velocity close to the Dirac point, leading to highly anisotropic Dirac cones and the enlargement of the gap from 140 to 340 meV. This gap can further be enhanced to 740 meV by Na co-adsorption onto the Ir cluster superlattice at room temperature. This value is close to that of Ge, and the high group velocity of the charge carriers is fully preserved. We also present data for Na adsorbed without the Ir clusters. In both cases we find that the Na is on top of the graphene layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...