Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Wiley Interdiscip Rev RNA ; 13(2): e1676, 2022 03.
Article in English | MEDLINE | ID: mdl-34109748

ABSTRACT

The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Neoplasms/metabolism , RNA, Circular/genetics , Transcriptome , Tumor Microenvironment/genetics
2.
Oncogenesis ; 10(8): 58, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362878

ABSTRACT

Epithelial splicing regulatory protein 1 (ESRP1) is an RNA binding protein that governs the alternative splicing events related to epithelial phenotypes. ESRP1 contributes significantly at different stages of cancer progression. ESRP1 expression is substantially elevated in carcinoma in situ compared to the normal epithelium, whereas it is drastically ablated in cancer cells within hypoxic niches, which promotes epithelial to mesenchymal transition (EMT). Although a considerable body of research sought to understand the EMT-associated ESRP1 downregulation, the regulatory mechanisms underlying ESRP1 upregulation in primary tumors remained largely uncharted. This study seeks to unveil the regulatory mechanisms that spatiotemporally fine-tune the ESRP1 expression during breast carcinogenesis. Our results reveal that an elevated expression of transcription factor E2F1 and increased CpG hydroxymethylation of the E2F1 binding motif conjointly induce ESRP1 expression in breast carcinoma. However, E2F1 fails to upregulate ESRP1 despite its abundance in oxygen-deprived breast cancer cells. Mechanistically, impelled by the hypoxia-driven reduction of tet methylcytosine dioxygenase 3 (TET3) activity, CpG sites across the E2F1 binding motif lose the hydroxymethylation marks while gaining the de novo methyltransferase-elicited methylation marks. These two oxygen-sensitive epigenetic events work in concert to repel E2F1 from the ESRP1 promoter, thereby diminishing ESRP1 expression under hypoxia. Furthermore, E2F1 skews the cancer spliceome by upregulating splicing factor SRSF7 in hypoxic breast cancer cells. Our findings provide previously unreported mechanistic insights into the plastic nature of ESRP1 expression and insinuate important implications in therapeutics targeting breast cancer progression.

3.
Cell Mol Life Sci ; 78(6): 2729-2747, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386889

ABSTRACT

Maintenance of oxygen homeostasis is an indispensable criterion for the existence of multicellular life-forms. Disruption of this homeostasis due to inadequate oxygenation of the respiring tissues leads to pathological hypoxia, which acts as a significant stressor in several pathophysiological conditions including cancer, cardiovascular defects, bacterial infections, and neurological disorders. Consequently, the hypoxic tissues develop necessary adaptations both at the tissue and cellular level. The cellular adaptations involve a dramatic alteration in gene expression, post-transcriptional and post-translational modification of gene products, bioenergetics, and metabolism. Among the key responses to oxygen-deprivation is the skewing of cellular alternative splicing program. Herein, we discuss the current concepts of oxygen tension-dependent alternative splicing relevant to various pathophysiological conditions. Following a brief description of cellular response to hypoxia and the pre-mRNA splicing mechanism, we outline the impressive number of hypoxia-elicited alternative splicing events associated with maladies like cancer, cardiovascular diseases, and neurological disorders. Furthermore, we discuss how manipulation of hypoxia-induced alternative splicing may pose promising strategies for novel translational diagnosis and therapeutic interventions.


Subject(s)
Alternative Splicing , Cardiovascular Diseases/pathology , Hypoxia , Neoplasms/pathology , Neurodegenerative Diseases/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiovascular Diseases/genetics , Humans , Neoplasms/genetics , Neurodegenerative Diseases/genetics , RNA Precursors/metabolism , Signal Transduction
4.
NAR Cancer ; 2(3): zcaa021, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33089214

ABSTRACT

Hypoxic microenvironment heralds epithelial-mesenchymal transition (EMT), invasion and metastasis in solid tumors. Deregulation of alternative splicing (AS) of several cancer-associated genes has been instrumental in hypoxia-induced EMT. Our study in breast cancer unveils a previously unreported mechanism underlying hypoxia-mediated AS of hMENA, a crucial cytoskeleton remodeler during EMT. We report that the hypoxia-driven depletion of splicing regulator ESRP1 leads to skipping of hMENA exon 11a producing a pro-metastatic isoform, hMENAΔ11a. The transcriptional repression of ESRP1 is mediated by SLUG, which gets stimulated via hypoxia-driven TGF-ß signaling. Interestingly, RBFOX2, an otherwise RNA-binding protein, is also found to transcriptionally repress ESRP1 while interacting with SLUG. Similar to SLUG, RBFOX2 gets upregulated under hypoxia via TGF-ß signaling. Notably, we found that the exosomal delivery of TGF-ß contributes to the elevation of TGF-ß signaling under hypoxia. Moreover, our results show that in addition to hMENA, hypoxia-induced TGF-ß signaling contributes to global changes in AS of genes associated with EMT. Overall, our findings reveal a new paradigm of hypoxia-driven AS regulation of hMENA and insinuate important implications in therapeutics targeting EMT.

SELECTION OF CITATIONS
SEARCH DETAIL
...