Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 241: 213-219, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28595969

ABSTRACT

Cucurbit yellow stunting disorder virus (CYSDV), emerged in the Sonoran Desert region of the southwestern USA in 2006 and has become well established. Symptoms induced by CYSDV infection include a striking interveinal chlorosis or yellowing and reduced yield and quality. The virus is transmitted by Bemisia tabaci, and the cryptic species MEAM1 has been present in the region since the early 1990s. CYSDV has now become the most economically important of the viruses affecting cucurbit production in the southwestern US. Here, we present a review of recent studies on CYSDV in the southwestern US, with implications for management of this virus throughout the world. Field surveys have established that CYSDV results in late-season infection of spring melon crops with limited economic impact; however, all summer and fall cucurbits become infected shortly after emergence due to high B. tabaci populations and abundant sources of inoculum. Studies have also demonstrated that CYSDV has an extensive host range among crops and weeds prevalent in the region. Recent studies demonstrated considerable variation in virus accumulation and transmission rates among the host plants evaluated as potential reservoirs. Cucurbit hosts had the highest CYSDV titers, were efficient sources for virus acquisition, and showed a positive correlation between titer in source plants and transmission to cucurbit plants. Non-cucurbit hosts had significantly lower CYSDV titers and varied in their capacity to serve as sources for transmission. Experiments demonstrated that multiple factors influence the efficiency with which a host plant species will be a reservoir for vector transmission of CYSDV to crops. Melon PI 313970 was identified as a new source of host plant resistance to CYSDV, in addition to the previously identified TGR 1551 (=PI 482420) and TGR 1937 (=PI 482431). Potential new sources of CYSDV resistance were identified by field screening of ca. 500 melon accessions with naturally occurring inoculum from 2007 through 2012. Host plant resistance to B. tabaci has also been identified in melon germplasm resistant to CYSDV and could be an important factor in reducing losses to CYSDV. Resistance to CYSDV is being transferred to US western shipping type cantaloupe and honeydew.


Subject(s)
Citrullus/virology , Crinivirus/isolation & purification , Cucumis melo/virology , Disease Resistance/genetics , Hemiptera/virology , Plant Diseases/economics , Plant Diseases/virology , Animals , Crinivirus/growth & development , Crops, Agricultural/virology , Host Specificity/genetics , Southwestern United States
2.
Plant Dis ; 100(1): 92-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30688566

ABSTRACT

Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, family Closteroviridae) was identified in the melon (Cucumis melo) production regions of the desert southwestern United States in fall 2006. It is now well established in the region, where it is transmitted efficiently by the sweet potato whitefly, Bemisia tabaci biotype B (MEAM1). In order to evaluate the spread and establishment of the virus, nearly all spring and fall cucurbit fields planted in the Imperial Valley of California from 2007 to 2009 were surveyed and representative plants were tested for CYSDV infection. Incidence of CYSDV in spring melon fields was initially low and limited to a small number of fields in 2007 but increased to 63% of fields by spring 2009. Virus incidence in fall melon fields was 100% in each year. These results suggested that the virus had become established in native vegetation, weeds, and other crop species, and represented an increasing threat to melon production in the southwestern United States. Therefore, a select set of weed and crop species which grow or are cultivated in the Imperial Valley were evaluated as CYSDV reservoir hosts. For each species, we determined the capacity of CYSDV to accumulate, the relationship between virus titer in these source plants and transmission by whiteflies, as well as subsequent accumulation in inoculated cucurbit plants. Among these hosts, there was considerable variation in virus accumulation and transmission rates. Cucurbit hosts had the highest CYSDV titers, were efficient sources for virus acquisition, and showed a positive correlation between titer in source plants and transmission. Noncucurbit hosts had significantly lower CYSDV titers and varied in their capacity to serve as sources for transmission. CYSDV titers in some noncucurbit source plants, specifically common bean (Phaseolus vulgaris) and shepherd's purse (Capsella bursa-pastoris), were not positively correlated with transmission, demonstrating that additional environmental, physical, or biochemical factors were involved. These results demonstrate that multiple factors influence the efficiency with which a host plant species will be a reservoir for vector transmission of virus to crops.

3.
Plant Dis ; 93(7): 685-690, 2009 Jul.
Article in English | MEDLINE | ID: mdl-30764363

ABSTRACT

Cucurbit yellow stunting disorder virus (CYSDV) was identified in the fall of 2006 affecting cucurbit production in the southwestern United States (California, Arizona), as well as in nearby Sonora, Mexico, resulting in nearly universal infection of fall melon crops in 2006 and 2007, and late infection of 2007 spring melons. Survival of CYSDV through the largely cucurbit-free winter months suggested the presence of weed or alternate crop hosts, although previous studies indicated a limited host range restricted to members of the Cucurbitaceae. To determine potential reservoir hosts for CYSDV in desert production, weed and crop hosts were collected from throughout the region over a period of 26 months, and were tested for the presence of CYSDV by reverse transcription-polymerase chain reaction (RT-PCR) using CYSDV HSP70h- and coat protein gene-specific primers. Many noncucurbits collected from infected melon fields and nearby areas were symptomless and virus free; however, CYSDV was detected in alfalfa (Medicago sativa), lettuce (Lactuca sativa), and snap bean (Phaseolus vulgaris), as well as in several weed species widely prevalent in the region. Typical crinivirus symptoms of interveinal yellowing and leaf brittleness were observed on CYSDV-infected snap bean, alkali mallow (Sida hederacea) and Wright's groundcherry (Physalis wrightii), while other infected crop and weed hosts were symptomless. Transmission tests demonstrated that lettuce, snap bean, alkali mallow, Wright's groundcherry, and buffalo gourd (Cucurbita foetidissima) could serve as virus reservoir hosts for transmission of CYSDV to melon and other cucurbits. These results expand the previously known host range of CYSDV, demonstrating that the virus is capable of infecting not only members of the Cucurbitaceae, but also plants in seven additional taxonomic families.

4.
J Econ Entomol ; 95(4): 733-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12216814

ABSTRACT

We compared smooth-leaf okra- and normal-leaf upland cotton (Gossypium hirsutum L.) strains and cultivars for susceptibility to colonization by Bemisia tabaci (Gennadius) biotype B. Experiments were conducted at seven field sites, five at Holtville, CA, and two at Maricopa, AZ, during 1996-2000. Okra-leaf strains and cultivars, as a group, had lower numbers of adults, eggs, and nymphs compared with normal-leaf strains and cultivars indicating the potential of okra-leaf genetic traits for reducing colonization by B. tabaci. Results also suggest that okra-leaf shape may provide less favorable micro-environmental conditions for the habitat of B. tabaci because of more open canopy as evidenced by higher leaf perimeter to leaf area ratio. The okra-leaf cultivar 'Siokra L-23' appears to have genetic traits that should be examined further as a source of B. tabaci resistance.


Subject(s)
Gossypium/physiology , Hemiptera/physiology , Animals , Female , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...