Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(27): 30972-30979, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32573186

ABSTRACT

1-Hexyne monomers were potentiostatically electropolymerized upon confinement in 1D channels of a surface-mounted metal-organic framework Cu(BDC) (SURMOF-2). A layer-by-layer deposition method allowed for SURMOF depostition on substrates with prepatterned electrodes, making it possible to characterize electrical conductivity in situ, i.e., without having to delaminate the conductive polymer thin film. Successful polymerization was evidenced by mass spectroscopy, and the electrical measurements demonstrated an increase of the electrical conductivity of the MOF material by 8 orders of magnitude. Extensive DFT calculations revealed that the final conductivity is limited by electron hopping between the conductive oligomers.

2.
Chemistry ; 24(34): 8603-8608, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29644729

ABSTRACT

Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed.

3.
Nanotechnology ; 26(5): 051001, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25591051

ABSTRACT

Here, we report for the first time a 'ligand free' method of designing 1D TiOx supramolecular network materials, which starts from Ti bare metal powder. Each TiOx oxidation step has been carefully investigated with different analytical techniques, including high resolution transmission electron microscopy/high resolution scanning electron microscopy (HRTEM/HRSEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and superconducting quantum interference device (SQUID) measurements. The self-assembly of TiOx nanoparticles (NPs) into 1D supramolecular nanoparticle networks is induced by the formation of mixed valent Ti(II,III) species. The synthesis starts with etching a bare Ti surface, followed by a continuous oxidation of TiOx clusters and NPs, and it finally ends with the self-assembly into rigid 1D NPs chains. Today, such self-assembled 1D NP TiOx network materials are bridging the gap between the nanoscale and the macroscopic material world and will further provide interesting research opportunities.

4.
Nanoscale ; 6(22): 13882-94, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25307934

ABSTRACT

MoO3 nanostructures have been grown in thin film form on five different substrates by RF magnetron sputtering and subsequent annealing; non-aligned nanorods, aligned nanorods, bundled nanowires, vertical nanorods and nanoslabs are formed respectively on the glass, quartz, wafer, alumina and sapphire substrates. The nanostructures formed on these substrates are characterized by AFM, SEM, GIXRD, XPS, micro-Raman, diffuse reflectance and photoluminescence spectroscopy. A detailed growth model for morphology alteration with respect to substrates has been discussed by considering various aspects such as surface roughness, lattice parameters and the thermal expansion coefficient, of both substrates and MoO3. The present study developed a strategy for the choice of substrates to materialize different types MoO3 nanostructures for future thin film applications. The gas sensing tests point towards using these MoO3 nanostructures as principal detection elements in gas sensors.

5.
Sci Rep ; 4: 3808, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24448350

ABSTRACT

An important step in oxide photochemistry, the loading of electrons into shallow trap states, was studied using infrared (IR) spectroscopy on both, rutile TiO2 powders and single-crystal, r-TiO2(110) oriented samples. After UV-irradiation or n-doping by exposure to H-atoms broad IR absorption lines are observed for the powders at around 940 cm(-1). For the single crystal substrates, the IR absorption bands arising from an excitation of the trapped electrons into higher-lying final states show additional features not observed in previous work. On the basis of our new, high-resolution data and theoretical studies on the polaron binding energy in rutile we propose that the trap states correspond to polarons and are thus intrinsic in nature. We assign the final states probed by the IR-experiments to hydrogenic states within the polaron potential. Implications of these observations for photochemistry on oxides will be briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...