Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Type of study
Publication year range
1.
Insect Mol Biol ; 27(1): 73-82, 2018 02.
Article in English | MEDLINE | ID: mdl-28960749

ABSTRACT

We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [3 H]-9-(2-phosphonomethoxyethyl) adenine ([3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticides/metabolism , Ivermectin/metabolism , Pediculus/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Insect Proteins/metabolism , Pediculus/metabolism
2.
Insect Mol Biol ; 26(4): 383-391, 2017 08.
Article in English | MEDLINE | ID: mdl-28370744

ABSTRACT

Acetyl-coenzyme A carboxylase (ACC) catalyses the carboxylation of acetyl-coenzyme A (acetyl-CoA) to produce malonyl-CoA during the de novo synthesis of fatty acids. Spirotetramat, an inhibitor of ACC, is widely used to control a range of sucking insects, including the Aphis gossypii. In the present study, Reverse transcription quantitative real-time PCR (RT-qPCR) results demonstrated that ACC was significantly overexpressed in a laboratory-selected spirotetramat-resistant strain compared with the susceptible strain. ACC RNA interference significantly suppressed fecundity and led to cuticle formation deficiencies in resistant adults and nymphs compared with the control. The full-length ACC gene was sequenced from both resistant and susceptible cotton aphids, and a strong association was found between spirotetramat resistance and 14 amino acid substitutions in the biotin carboxylase domain and carboxyl transferase domain of the ACC gene. Furthermore, ACC activity was higher in resistant aphids than in the susceptible strain, and ACC in the resistant aphids exhibited significant insensitivity to spirotetramat and spirotetramat-enol. The results indicate that the overexpressed insensitive (mutated) ACC target played an important role in the high levels of spirotetramat resistance observed here. This association of amino acid substitution with resistance is the first report of a potential target site mechanism affecting spirotetramat in the cotton aphid.


Subject(s)
Acetyl Coenzyme A/metabolism , Aphids/enzymology , Aza Compounds , Insecticides , Spiro Compounds , Acetyl Coenzyme A/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Aphids/genetics , Insecticide Resistance/genetics , Molecular Sequence Data , RNA Interference
3.
J Econ Entomol ; 108(6): 2743-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26470382

ABSTRACT

The San Jose scale Diaspidiotus perniciosus Comstock is one of the most important pests of deciduous fruit trees. The major cause of recent outbreaks in apple orchards is thought to be the development of insecticide resistance, specifically organophosphates. The first report was given in North America, and now, in Chile. In the present study, San Jose scale populations collected from two central regions of Chile were checked for their susceptibility to different mode of action insecticides in order to establish alternatives to manage this pest. No evidence of cross resistance between organophosphates insecticides and acetamiprid, buprofezin, pyriproxyfen, spirotetramat, sulfoxaflor, or thiacloprid was found. Baselines of LC50-LC95 for different life stages of San Jose scale are given, as reference to future studies of resistance monitoring. The systemic activity of acetamiprid, spirotetramat, and thiacloprid was higher than the contact residue effect of these compounds. For sulfoxaflor, both values were similar. Program treatments including one or more of these compounds are compared in efficacy and impact on resistance ratio values. In order to preserve new insecticides as an important tool to control San Jose scale, resistance management programs should be implemented, considering insecticide mode of action classes alternated or mixed.


Subject(s)
Hemiptera , Insecticide Resistance , Animals , Chlorpyrifos , Insect Control , Lethal Dose 50 , Organophosphates , Organothiophosphorus Compounds
4.
Insect Biochem Mol Biol ; 65: 91-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26363294

ABSTRACT

Cyenopyrafen is a Mitochondrial Electron Transport Inhibitor (METI) acaricide with a novel mode of action at complex II, which has been recently developed for the control of the spider mite Tetranychus urticae, a pest of eminent importance globally. However, some populations of T. urticae are cross-resistant to this molecule, and cyenopyrafen resistance can be readily selected in the lab. The cytochrome P450s genes CYP392A11 and CYP392A12 have been strongly associated with the phenotype. We expressed the CYP392A11 and the CYP392A12 genes with T. urticae cytochrome P450 reductase (CPR) in Escherichia coli. CYP392A12 was expressed predominately as an inactive form, witnessed by a peak at P420, despite optimization efforts on expression conditions. However, expression of CYP392A11 produced a functional enzyme, with high activity and preference for the substrates Luciferin-ME EGE and ethoxycoumarin. CYP392A11 catalyses the conversion of cyenopyrafen to a hydroxylated analogue (kcat = 2.37 pmol/min/pmol P450), as well as the hydroxylation of fenpyroximate (kcat = 1.85 pmol/min/pmol P450). In addition, transgenic expression of CYP392A11 in Drosophila melanogaster, in conjunction with TuCPR, confers significant levels of fenpyroximate resistance. The overexpression of CYP392A11 in multi-resistant T. urticae strains, not previously exposed to cyenopyrafen, which had been indicated by microarray studies, was confirmed by qPCR, and it was correlated with significant levels of cyenopyrafen and fenpyroximate cross-resistance. The implications of our findings for insecticide resistance management strategies are discussed.


Subject(s)
Acaricides/metabolism , Acrylonitrile/analogs & derivatives , Arthropod Proteins/metabolism , Benzoates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Pyrazoles/metabolism , Tetranychidae/drug effects , Acaricides/pharmacology , Acrylonitrile/metabolism , Acrylonitrile/pharmacology , Animals , Arthropod Proteins/genetics , Benzoates/pharmacology , Cytochrome P-450 Enzyme System/genetics , Drosophila melanogaster/drug effects , Insecticide Resistance , Pyrazoles/pharmacology , Tetranychidae/enzymology , Tetranychidae/genetics
5.
Insect Mol Biol ; 23(4): 511-26, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24707894

ABSTRACT

The pollen beetle Meligethes aeneus is the most important coleopteran pest in European oilseed rape cultivation, annually infesting millions of hectares and responsible for substantial yield losses if not kept under economic damage thresholds. This species is primarily controlled with insecticides but has recently developed high levels of resistance to the pyrethroid class. The aim of the present study was to provide a transcriptomic resource to investigate mechanisms of resistance. cDNA was sequenced on both Roche (Indianapolis, IN, USA) and Illumina (LGC Genomics, Berlin, Germany) platforms, resulting in a total of ∼53 m reads which assembled into 43 396 expressed sequence tags (ESTs). Manual annotation revealed good coverage of genes encoding insecticide target sites and detoxification enzymes. A total of 77 nonredundant cytochrome P450 genes were identified. Mapping of Illumina RNAseq sequences (from susceptible and pyrethroid-resistant strains) against the reference transcriptome identified a cytochrome P450 (CYP6BQ23) as highly overexpressed in pyrethroid resistance strains. Single-nucleotide polymorphism analysis confirmed the presence of a target-site resistance mutation (L1014F) in the voltage-gated sodium channel of one resistant strain. Our results provide new insights into the important genes associated with pyrethroid resistance in M. aeneus. Furthermore, a comprehensive EST resource is provided for future studies on insecticide modes of action and resistance mechanisms in pollen beetle.


Subject(s)
Coleoptera/drug effects , Coleoptera/genetics , Cytochrome P-450 Enzyme System/genetics , Enzyme Induction/drug effects , Insecticide Resistance/physiology , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Base Sequence , Coleoptera/enzymology , Expressed Sequence Tags , Insecticide Resistance/genetics , Molecular Sequence Data , Mutation , Transcriptome , Voltage-Gated Sodium Channels/genetics
6.
Insect Biochem Mol Biol ; 46: 43-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24463358

ABSTRACT

Abamectin is one of the most important insecticides worldwide. It is used against major agricultural pests and insects of public health importance, as well as against endoparasites in animal health. Abamectin has been used successfully for the control of the spider mite Tetranychus urticae, a major agricultural pest with global distribution, an extremely diverse host range, and a remarkable ability to develop resistance against insecticides including abamectin. Target site resistance mutations may explain a large part of resistance, although genetic evidence and transcriptomic data indicated that additional mechanisms may also be implicated in the abamectin resistant phenotype. To investigate a functional link between cytochrome P450-mediated metabolism and abamectin resistance, we recombinantly expressed three cytochrome P450s (CYP392A16, CYP392D8 and CYP392D10) that have been associated with high levels of abamectin resistance in a resistant T. urticae strain isolated from Greece. CYP392A16 was expressed predominately in its P450 form however, both CYP392D8 and CYP392D10 were expressed predominately as P420, despite optimization efforts on expression conditions. CYP392A16 catalyses the hydroxylation of abamectin (Kcat=0.54 pmol/min/pmol P450; Km=45.9 µM), resulting in a substantially less toxic compound as confirmed by bioassays with the partially purified metabolite. However, CYP392A16 did not metabolize hexythiazox, clofentezine and bifenthrin, active ingredients that also showed reduced toxicity in the abamectin resistant strain. Among a number of fluorescent and luminescent substrates screened, Luciferin-ME EGE was preferentially metabolized by CYP392A16, and it may be a potential diagnostic probe for metabolic resistance detection and monitoring.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Drug Resistance/genetics , Ivermectin/analogs & derivatives , Tetranychidae/drug effects , Tetranychidae/genetics , Acaricides/metabolism , Acaricides/pharmacology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Escherichia coli/genetics , Female , Gene Expression/drug effects , Ivermectin/metabolism , Ivermectin/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tetranychidae/metabolism
7.
Insect Mol Biol ; 21(3): 327-34, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22458881

ABSTRACT

Spiromesifen is a novel insecticide and is classed as a tetronic acid derivative. It targets the insects' acetyl-coenzyme A carboxylase (ACCase) enzyme, causing a reduction in lipid biosynthesis. At the time of this publication, there are no reports of resistance to this class of insecticides in insects although resistance has been observed in several mite species. The greenhouse whitefly Trialeurodes vaporariorum (Westwood) is a serious pest of protected vegetable and ornamental crops in temperate regions of the world and spiromesifen is widely used in its control. Mortality rates of UK and European populations of T. vaporariorum to spiromesifen were calculated and up to 26-fold resistance was found. We therefore sought to examine the molecular mechanism underlying spiromesifen resistance in this important pest. Pre-treatment with piperonyl butoxide did not synergize spiromesifen, suggesting a target-site resistance mechanism. The full length ACCase gene was sequenced for a range of T. vaporariorum strains and a strong association was found between spiromesifen resistance and a glutamic acid substitution with lysine in position 645 (E645K) of this gene. A TaqMan allelic discrimination assay confirmed these findings. Although this resistance is not considered sufficient to compromise the field performance of spiromesifen, this association of E645K with resistance is the first report of a potential target site mechanism affecting an ACCase inhibitor in an arthropod species.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Amino Acid Substitution/genetics , Hemiptera/enzymology , Hemiptera/genetics , Insecticide Resistance/genetics , Insecticides/toxicity , Spiro Compounds/toxicity , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/metabolism , Alleles , Amino Acid Sequence , Animals , Conserved Sequence/genetics , Female , Hemiptera/drug effects , Insecticide Resistance/drug effects , Larva/enzymology , Male , Molecular Sequence Data , Piperonyl Butoxide/toxicity , Point Mutation/genetics , Protein Structure, Tertiary , Sequence Alignment , Sequence Analysis, Protein , Survival Analysis
8.
Insect Mol Biol ; 20(6): 763-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21929695

ABSTRACT

The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Hemiptera/enzymology , Imidazoles , Insect Proteins/metabolism , Insecticides , Nitro Compounds , Amino Acid Sequence , Animals , Cytochrome P-450 Enzyme System/genetics , DNA, Complementary/chemistry , Female , Gene Dosage , Hemiptera/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Molecular Sequence Data , Neonicotinoids , Polymerase Chain Reaction
9.
Insect Mol Biol ; 20(1): 135-40, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20735493

ABSTRACT

Bifenazate is a recently developed acaricide that is mainly used to control spider mites on a variety of crops. Although first thought to be a neurotoxin, genetic evidence obtained from bifenazate resistant Tetranychus urticae strains suggested an alternative mode of action as a Qo pocket inhibitor of the mitochondrial complex III. In this study, we reveal how bifenazate resistance in strains of Panonychus citri is maternally inherited and can confer cross-resistance to the known Qo inhibitor acequinocyl. The mitochondrial genome of P. citri was sequenced and Qo pocket mutations were shown to be linked with the resistant trait. Parallel evolution of cytochrome b mediated bifenazate resistance corroborates the alternative mode of action and yet again illustrates that care should be taken when employing Qo inhibitors as crop protection compounds.


Subject(s)
Acaricides/pharmacology , Carbamates/pharmacology , Cytochromes b/genetics , Hydrazines/pharmacology , Tetranychidae/drug effects , Tetranychidae/genetics , Acetates/pharmacology , Animals , Base Sequence , Evolution, Molecular , Genome, Mitochondrial , Inheritance Patterns , Insecticide Resistance/genetics , Mutation , Naphthalenes/pharmacology , Tetranychidae/metabolism , Ubiquinone/metabolism
10.
Bull Entomol Res ; 99(1): 23-31, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18590597

ABSTRACT

A Belgian field strain (MR-VP) of Tetranychus urticae (Koch) (Acari: Tetranychidae) exhibits different levels of resistance to four frequently used METI (mitochondrial electron transport inhibitor)-acaricides, i.e. tebufenpyrad, fenpyroximate, pyridaben and fenazaquin. Resistance factors for these compounds were 184, 1547, 5971 and 35, respectively. A 23.5-fold increase in 7-ethoxy-4-trifluoromethylcoumarin O-deethylation activity suggested that metabolic resistance through elevated levels of cytochrome P450 dependent monooxygenase-activity is a possible resistance mechanism.However, synergism studies with different metabolic inhibitors revealed some contrasting resistance mechanisms between the METI-acaricides. Tebufenpyrad resistance could only be synergized after pre-treatment with the monooxygenase inhibitor piperonyl butoxide (PBO), whereas pyridaben resistance was strongly synergized both by PBO and the esterase inhibitor S,S,S-tributylphosphorotrithioate (DEF). Resistance levels to fenpyroximate could neither be suppressed by PBO nor by DEF. Although METI-acaricides are structurally related, these findings probably reflect a different role of esterases and mono-oxygenases in metabolic detoxification between these compounds. The overall lack of synergism by diethylmaleate (DEM) suggests that glutathione-S-transferases are not an important factor in resistance to METIs.Reciprocal crosses between susceptible females and resistant males showed no maternal effect, and resistance to METI-acaricides was inherited generally as a dominant trait. Backcrosses with F1 females revealed striking differences in the mode of inheritance. Although resistance to fenpyroximate and pyridaben was under monogenic control, resistance to tebufenpyrad was under control of more than one gene.


Subject(s)
Drug Resistance/physiology , Insecticides , Mites , Animals , Drug Resistance/genetics , Drug Synergism , Female , Male , Mites/enzymology
11.
J Insect Physiol ; 49(4): 323-37, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12769986

ABSTRACT

Different insect neuropeptides (helicokinins, tachykinin-related and allatoregulating peptides) were investigated with regard to their myostimulatory effects using whole-gut preparations isolated from fifth instar Heliothis virescens larvae. The experiments demonstrated that representatives of all three peptide families are able to induce and amplify gut contractions in this species in a dose-dependent manner. Structure-activity studies (alanine scan, D-amino acid scan and truncated analogues) with the helicokinin Hez-K1 supported the finding, that the core sequence for biological activity of kinins is the amidated C-terminal pentapeptide (FSPWG-amide). Similar investigations with insect tachykinin isolated from Leucophaea madera (Lem-TRP1) revealed that the minimum sequence evoking a physiological gut response in H. virescens is the amidated hexapeptide (GFLGVR-amide), which represents the conserved amino acid sequence for Leucophaea TRPs in general. The peptide concentration causing a half-maximal gut contraction (EC(50)) for Lem-TRP1 was about 26 nM. Although the potency of Lem-TRP1 was 9-fold lower compared with Hez-KI (EC(50): 3 nM), the maximal tension of the gut obtained with Lem-TRP1 was 1.7-fold higher compared with Hez-KI. The EC(50) of Manduca sexta allatotropin (Mas-AT; 79 nM) was of lowest potency among all three peptides tested. In a pharmacological study, co-incubation experiments with Lem-TRP1, Hez-KI or Mas-AT and compounds interfering with signal transduction pathways were employed to investigate the mode of action of the myotropic effects of these peptides. Cadmium and the protein kinase C (PKC) inhibitor tamoxifen attenuated the contractile effects of all three peptides tested. The data suggest that in the gut muscle of H. virescens the myotropic peptides bind to G-protein-coupled receptors that cause contraction by promoting the entry of extracellular calcium mediated by a PKC involved pathway.


Subject(s)
Insect Hormones/pharmacology , Intestines/drug effects , Lepidoptera/drug effects , Neuropeptides/pharmacology , Tachykinins/pharmacology , Animals , Larva/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Structure-Activity Relationship
12.
Bull Entomol Res ; 93(1): 47-54, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12593682

ABSTRACT

The susceptibility to several insecticides of 16 and 8 strains of Myzus persicae Sulzer and Aphis gossypii Glover, respectively, received from different European countries in 2001 was investigated. Most of the strains were derived from places known for their aphid resistance problems to conventional insecticides before imidacloprid was introduced. In many regions and agronomic cropping systems imidacloprid has been an essential part of aphid control strategies for a decade, and therefore the susceptibility of aphid populations to imidacloprid using FAO-dip tests and diagnostic concentrations in a leaf-dip bioassay was checked. Additional insecticides tested were cyfluthrin (chemical class: pyrethroid), pirimicarb (carbamate), methamidophos and oxydemeton-methyl (organophosphates). Diagnostic concentrations (LC99-values of reference strains) for each insecticide were established by dose response analysis using a new leaf-disc dip bioassay format in 6-well tissue culture plates. Virtually no resistance to imidacloprid in any of the field-derived populations of M. persicae and A. gossypii was detected. In contrast, strong resistance was found to pirimicarb and oxydemeton-methyl, and to a lesser extent also to cyfluthrin. Two strains of A. gossypii exhibited reduced susceptibility to imidacloprid when tested directly after collection. However, after maintaining them for six weeks in the laboratory, the aphids were as susceptible as the reference strain. The diagnostic concentration of methamidophos did not reveal any resistance in M. persicae, but did so in four strains of A. gossypii.


Subject(s)
Aphids , Imidazoles , Insecticides , Animals , Aphids/growth & development , Biological Assay , Dose-Response Relationship, Drug , Environmental Monitoring , Europe , Insect Control , Insecticide Resistance , Neonicotinoids , Nitro Compounds , Plants , Pyrethrins
13.
Arch Insect Biochem Physiol ; 47(4): 169-80, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11462221

ABSTRACT

Proteolytic enzyme biosynthesis in the midgut of the 4th instar larva of Heliothis virescens is cyclical. Protease activity increases immediately after the molt from the 3rd to the 4th instar larvae and declines just before the molt into the 5th instar. Characterization of the midgut proteases using soybean tryspin inhibitor (SBTI) Bowman Birk Inhibitor (BBI) 4-(2-aminoethyl)benzensulfonylfluoride (AEBSF) and N-tosyl-L-phenylalanine chloromethylketone (TPCK) indicate that protease activity is mostly trypsinlike (80%) with a small amount of chymotrypsinlike activity (20%). Injections of late 3rd and 4th instar larval hemolymph into H. virescens larvae inhibited tryspin biosynthesis in the larval midgut. Similar results were obtained when highly purified 4th instar larval hemolymph that crossreacted with Aea-TMOF antisurm using ELISA was injected into 2nd instar larvae. Injections of Aea-TMOF and its analogues into 2nd instar, and Aea-TMOF alone into 4th instar larvae stopped trypsin biosynthesis 24 and 48 h after the injections, respectively. Injections of 4th instar H. virescens larval hemolymph into female Aedes aegypti that took a blood meal stopped trypsin biosynthesis and egg development. These results show that the biosynthesis of trypsin-like enzymes in the midgut of a lepidoptera is modulated with a hemolymph circulating TMOF-like factor that is closely related to Aea-TMOF. Arch.


Subject(s)
Moths/enzymology , Oligopeptides/metabolism , Serine Endopeptidases/biosynthesis , Animals , Hemolymph/metabolism , Larva/enzymology , Moths/growth & development , Serine Proteinase Inhibitors/pharmacology , Weight Gain
14.
Pest Manag Sci ; 57(3): 253-61, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11455655

ABSTRACT

The toxicities of eight structurally different acaricidal compounds to six-legged larvae (first motile stage) of three laboratory strains of the two-spotted spider mite, Tetranychus uritcae, and the European red mite, Panonychus ulmi, were evaluated following spray application. The larvae of five field-derived strains of T urticae originating from France, Italy, Brazil, California and Florida were also tested for their susceptibilities to discriminating concentrations of several acaricides resulting in 95% mortality when applied to the organophosphate-resistant laboratory reference strain WI. The spray bioassay used was robust and gave repeatable results with a wide range of acaricidal compounds, irrespective of their mode of action (ovo-larvicides or primarily acting on motile life stages). Compounds tested were abamectin, azocyclotin, chlorpyrifos, clofentezine, deltamethrin, fenpyroximate, hexythiazox and pyridaben. Larvae of one of the laboratory strains of T urticae, AK, originally collected in Japan in 1996 and maintained without further selection pressure, exhibited 2000- and > 4000-fold resistance to the mitochondrial electron transport inhibitors pyridaben and fenpyroximate, respectively. Another strain of T urticae, AU, obtained from Australia and maintained in the laboratory under selection with hexythiazox and clofentezine since 1987 showed > 770- and > 1000-fold resistance to clofentezine and hexythiazox, respectively. The same resistance pattern was observed against larvae of a laboratory strain of P ulmi, CE, also selected with hexythiazox. Larvae of one of the field-derived strains of T urticae, BR, showed a lower susceptibility to a number of compounds, whilst the others were susceptible to all compounds except the organophosphates.


Subject(s)
Insecticides/pharmacology , Larva/drug effects , Mites/drug effects , Animals , Biological Assay , Drug Resistance , Electron Transport/drug effects , Insecticide Resistance , Larva/classification , Lethal Dose 50 , Mites/classification , Mitochondria/drug effects
15.
Pest Manag Sci ; 57(7): 577-86, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11464788

ABSTRACT

Acute oral and contact toxicity tests of imidacloprid, an insecticide acting agonistically on nicotinic acetylcholine receptors (nAChR), to adult honeybees, Apis mellifera L var carnica, were carried out by seven different European research facilities. Results indicated that the 48-h oral LD50 of imidacloprid is between 41 and > 81 ng per bee, and the contact LD50 between 49 and 102 ng per bee. The ingested amount of imidacloprid-containing sucrose solution decreased with increasing imidacloprid concentrations and may be attributed to dose-related sub-lethal intoxication symptoms or to antifeedant responses. Some previously reported imidacloprid metabolites occurring at low levels in planta after seed dressing, i.e. olefine-, 5-OH- and 4,5-OH-imidacloprid, showed lower oral LD50 values (> 36, > 49 and 159 ng per bee, respectively) compared with the concurrently tested parent molecule (41 ng per bee). The urea metabolite and 6-chloronicotinic acid (6-CNA) exhibited LD50 values of > 99,500 and > 121,500 ng per bee, respectively. The pharmacological profile of the [3H]imidacloprid binding site in honeybee head membrane preparations is consistent with that anticipated for a nAChR. IC50 values for the displacement of [3H]imidacloprid by several metabolites such as olefine, 5-OH-, 4,5-OH-imidacloprid, urea and 6-CNA were 0.45, 24, 6600, > 100,000, and > 100,000 nM, respectively. Displacement of [3H]imidacloprid by imidacloprid revealed an IC50 value of 2.9 nM, thus correlating well with the observed acute oral toxicity of the compounds in honeybees. Neurons isolated from the antennal lobe of A mellifera and subjected to whole-cell voltage clamp electrophysiology responded to the application of 100 microM acetylcholine with a fast inward current of between 30 and 1600 pA at -70 mV clamp potential. Imidacloprid and two of the metabolites (olefine- and 5-OH-imidacloprid) acted agonistically on these neurons, whereas the others did not induce currents at test concentrations up to 3 mM. The electrophysiological data revealed Hill coefficients of approximately 1, indicating a single binding site responsible for an activation of the receptor and no direct cooperativity or allosteric interaction with a second binding site.


Subject(s)
Bees , Imidazoles , Insecticides , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Animals , Bees/metabolism , Biological Assay , Electrophysiology , Imidazoles/chemistry , Imidazoles/metabolism , Insecticides/chemistry , Insecticides/metabolism , Lethal Dose 50 , Neonicotinoids , Neurons/drug effects , Nitro Compounds
16.
J Econ Entomol ; 94(6): 1577-83, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11777067

ABSTRACT

Resistance of the twospotted spider mite, Tetranychus urticae Koch, to acaricides acting as mitochondrial electron transport inhibitors (METIs) is an increasing problem. Because of their high levels of cross-resistance to all commercially available METI-acaricides, a Japanese strain (AKITA) and an English strain (UK-99) of T. urticae were investigated in detail. Larvae of both strains, AKITA and UK-99, showed 1,100- and 480-fold resistance against pyridaben, 870- and 45-fold resistance against fenpyroximate, and 33- and 44-fold resistance against tebufenpyrad, respectively, in a foliar spray application bioassay compared with the susceptible strain GSS. These resistance factors remained stable even when maintained in the laboratory without further selection. Furthermore, strain AKITA showed cross-resistance to dicofol. The METI resistant strains AKITA and UK-99 showed 2.4- and 1.7-fold enhanced O-ethoxycoumarin O-deethylation (cytochrome P450) activity. Increased oxidative metabolism of the METI-acaricides in the resistant strains could be partially suppressed in vivo by the monooxygenase-inhibitor piperonyl butoxide. Reciprocal crosses of homozygous, diploid females and hemizygous, haploid males of strains GSS (susceptible) and AKITA (resistant) revealed that resistance to pyridaben and fenpyroximate was inherited incompletely dominant with slight differences between maternal and paternal inheritance. This is the first attempt to mechanistically describe METI-acaricide resistance in T. urticae. The implications for resistance management strategies are discussed.


Subject(s)
Insecticides/pharmacology , Mites/drug effects , Mitochondria/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Animals , Benzoates/pharmacology , Biological Assay , Dicofol/pharmacology , Electron Transport , Electron Transport Complex I , Female , Fluorometry/methods , Insecticide Resistance/genetics , Larva/drug effects , Male , Mites/genetics , Mites/metabolism , Pesticide Synergists/pharmacology , Pyrazoles/pharmacology , Pyrethrins/pharmacology , Pyridazines/pharmacology , Tick Control/methods
17.
J Insect Physiol ; 46(6): 969-976, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-10802110

ABSTRACT

Studies were undertaken to investigate vitellogenesis and its regulation in female adults of the fall armyworm, Spodoptera frugiperda. A single female-specific protein, likely to be the S. frugiperda vitellogenin (Vg), appeared approximately 5 h after adult eclosion in the hemolymph of virgin females. The concentration of the protein increased with age as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed. A protein with the same relative molecular mass was also present in egg extracts, but absent from hemolymph samples from male moths. The relative molecular mass of the designated S. frugiperda Vg was determined as 164.5+/-2.5 kDa. Vitellogenic oocytes became visible 36-48 h after emergence and egg deposition began on day 3 of adult life. Vg could not be detected in the hemolymph of females decapitated directly after eclosion. When decapitated virgin females were injected with the JH-mimic methoprene (MP), the level of Vg was comparable to that in non-decapitated moths, indicating that vitellogenesis in S. frugiperda depends on juvenile hormone (JH). However, the number of vitellogenic oocytes was somewhat lower than in non-decapitated virgin females. Injection of 20-hydroxyecdysone (20E) promoted Vg production to a similar extent in decapitated female moths, but in contrast to methoprene injection, treatment with 20E never resulted in the production of vitellogenic oocytes. In vitro cultivated ovaries of adult females dissected directly after eclosion produced lower amounts of ecdysteroids than those isolated on day 1 after emergence. Our results suggest a crucial role for 20E in the induction of vitellogenesis in the noctuid S. frugiperda, while JH seems to be essential for the continued uptake of Vg by developing oocytes and may trigger 20E biosynthesis in the ovary.

SELECTION OF CITATIONS
SEARCH DETAIL
...