Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 50(15): 8690-8699, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35871298

ABSTRACT

Long interspersed nuclear element 1 (L1) parasitized most vertebrates and constitutes ∼20% of the human genome. It encodes ORF1p and ORF2p which form an L1-ribonucleoprotein (RNP) with their encoding transcript that is copied into genomic DNA (retrotransposition). ORF1p binds single-stranded nucleic acid (ssNA) and exhibits NA chaperone activity. All vertebrate ORF1ps contain a coiled coil (CC) domain and we previously showed that a CC-retrotransposition null mutant prevented formation of stably bound ORF1p complexes on ssNA. Here, we compared CC variants using our recently improved method that measures ORF1p binding to ssDNA at different forces. Bound proteins decrease ssDNA contour length and at low force, retrotransposition-competent ORF1ps (111p and m14p) exhibit two shortening phases: the first is rapid, coincident with ORF1p binding; the second is slower, consistent with formation of tightly compacted complexes by NA-bound ORF1p. In contrast, two retrotransposition-null CC variants (151p and m15p) did not attain the second tightly compacted state. The C-terminal half of the ORF1p trimer (not the CC) contains the residues that mediate NA-binding. Our demonstrating that the CC governs the ability of NA-bound retrotransposition-competent trimers to form tightly compacted complexes reveals the biochemical phenotype of these coiled coil mutants.


Subject(s)
Long Interspersed Nucleotide Elements , Animals , DNA/chemistry , DNA, Single-Stranded/genetics , Humans , Nucleic Acids , Open Reading Frames , Ribonucleoproteins/metabolism
2.
Nucleic Acids Res ; 49(3): 1532-1549, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33434279

ABSTRACT

Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB-ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Kinetics , Mutation , Protein Binding
3.
Methods Mol Biol ; 2106: 283-297, 2020.
Article in English | MEDLINE | ID: mdl-31889265

ABSTRACT

The L1 retrotransposon is the dominant transposable element in mammalian genomes. L1 comprises at least 20% of the human genome. While most L1 regions are inactive, a few still retain the ability to retrotranspose. L1 encodes two proteins, ORF1p and ORF2p, which are required for retrotransposition. During retrotransposition, ORF2p functions as the reverse transcriptase and the endonuclease. ORF1p is a nucleic acid chaperone that binds nucleic acids with high affinity. However, to date, a detailed mechanistic understanding of ORF1p function in L1 retrotransposition is lacking. The single molecule DNA stretching methods described here have been extensively used to understand ORF1p's complex nucleic acid binding properties. By correlating these properties to ORF1p's ability to support L1 retrotransposition in in vivo cell-culture based assays, these studies have significantly contributed to advance the understanding of ORF1p function. Although described in the context of ORF1p, these methods provide a general mechanism to study complex protein-DNA interactions.


Subject(s)
Long Interspersed Nucleotide Elements , Molecular Chaperones/chemistry , Optical Tweezers , Proteins/chemistry , Single Molecule Imaging/methods , Humans , Molecular Chaperones/metabolism , Protein Binding , Proteins/metabolism
4.
Elife ; 82019 12 18.
Article in English | MEDLINE | ID: mdl-31850845

ABSTRACT

APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.


Subject(s)
APOBEC-3G Deaminase/metabolism , DNA, Single-Stranded/metabolism , Immunologic Factors/metabolism , APOBEC-3G Deaminase/chemistry , Immunologic Factors/chemistry , Protein Binding , Protein Conformation , Protein Domains
5.
J Am Chem Soc ; 141(4): 1537-1545, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30599508

ABSTRACT

Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly more rapid DNA covalent-binding activity compared to its parent complex. To understand the underlying molecular mechanism, we used single-molecule studies with optical tweezers to probe the kinetics of DNA-phenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extensions of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA-phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ≈ 10 s, followed by slow and irreversible DNA elongation that reached equilibrium in ∼30 min. In contrast, only reversible fast DNA elongation occured for its stereoisomer  trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding was observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans-phenanthriplatin. This study demonstrates that reversible DNA intercalation provides a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Organoplatinum Compounds/chemistry , Phenanthridines/chemistry , DNA/metabolism , HCT116 Cells , Humans , Intercalating Agents/metabolism , Intercalating Agents/pharmacology , Molecular Docking Simulation , Nucleic Acid Conformation , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacology , Phenanthridines/metabolism , Phenanthridines/pharmacology , Stereoisomerism
6.
Semin Cell Dev Biol ; 86: 140-149, 2019 02.
Article in English | MEDLINE | ID: mdl-29596909

ABSTRACT

Long interspersed nuclear element 1 (LINE-1 or L1) is the dominant retrotransposon in mammalian genomes. L1 encodes two proteins ORF1p and ORF2p that are required for retrotransposition. ORF2p functions as the replicase. ORF1p is a coiled coil-mediated trimeric, high affinity RNA binding protein that packages its full- length coding transcript into an ORF2p-containing ribonucleoprotein (RNP) complex, the retrotransposition intermediate. ORF1p also is a nucleic acid chaperone that presumably facilitates the proposed nucleic acid remodeling steps involved in retrotransposition. Although detailed mechanistic understanding of ORF1p function in this process is lacking, recent studies showed that the rate at which ORF1p can form stable nucleic acid-bound oligomers in vitro is positively correlated with formation of an active L1 RNP as assayed in vivo using a cell culture-based retrotransposition assay. This rate was sensitive to minor amino acid changes in the coiled coil domain, which had no effect on nucleic acid chaperone activity. Additional studies linking the complex nucleic acid binding properties to the conformational changes of the protein are needed to understand how ORF1p facilitates retrotransposition.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA/metabolism , Long Interspersed Nucleotide Elements/genetics , Open Reading Frames/genetics , Animals , Binding Sites , DNA/chemistry , DNA-Binding Proteins/chemistry , Humans , Kinetics
7.
Biochemistry ; 57(5): 614-619, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29243480

ABSTRACT

Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.


Subject(s)
DNA, Viral/metabolism , Intercalating Agents/metabolism , Biotinylation , DNA, Viral/chemistry , Intercalating Agents/chemistry , Kinetics , Ligands , Microspheres , Molecular Structure , Optical Tweezers , Single Molecule Imaging , Stress, Mechanical , Thermodynamics
8.
Protein Sci ; 26(7): 1413-1426, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28263430

ABSTRACT

Pol III core is the three-subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3' → 5' proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two-step reaction scheme in which pol III core binds bimolecularly to the primer-template junction, then converts at rate k2 into an exo-competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature- and mismatch-dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3' end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.


Subject(s)
DNA Polymerase III/chemistry , DNA, Bacterial/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Models, Chemical , Optical Tweezers , Catalysis , DNA Polymerase III/metabolism , DNA, Bacterial/biosynthesis , Escherichia coli Proteins/metabolism
9.
Retrovirology ; 13(1): 89, 2016 Dec 29.
Article in English | MEDLINE | ID: mdl-28034301

ABSTRACT

BACKGROUND: The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS: Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS: Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.


Subject(s)
Genome, Viral , HIV-1/chemistry , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , Simian Immunodeficiency Virus/chemistry , HIV-1/genetics , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/physiology , Nucleic Acid Conformation , Nucleocapsid Proteins/genetics , Protein Binding , Reverse Transcription , Simian Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
10.
Nucleic Acids Res ; 44(1): 281-93, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26673717

ABSTRACT

Detailed mechanistic understanding of L1 retrotransposition is sparse, particularly with respect to ORF1p, a coiled coil-mediated homotrimeric nucleic acid chaperone that can form tightly packed oligomers on nucleic acids. Although the coiled coil motif is highly conserved, it is uniquely susceptible to evolutionary change. Here we studied three ORF1 proteins: a modern human one (111p), its resuscitated primate ancestor (555p) and a mosaic modern protein (151p) wherein 9 of the 30 coiled coil substitutions retain their ancestral state. While 111p and 555p equally supported retrotransposition, 151p was inactive. Nonetheless, they were fully active in bulk assays of nucleic acid interactions including chaperone activity. However, single molecule assays showed that 151p trimers form stably bound oligomers on ssDNA at <1/10th the rate of the active proteins, revealing that oligomerization rate is a novel critical parameter of ORF1p activity in retrotransposition conserved for at least the last 25 Myr of primate evolution.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Protein Multimerization , Proteins/chemistry , Proteins/metabolism , DNA, Single-Stranded , Humans , Kinetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Oligonucleotides/genetics , Oligonucleotides/metabolism , Protein Binding , Proteins/genetics
11.
Nucleic Acids Res ; 42(4): 2525-37, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24293648

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC's NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC's aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity.


Subject(s)
DNA/chemistry , HIV-1/physiology , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/chemistry , Cell Line , DNA/metabolism , Mutation , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...