Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 2(1): 23, 2014.
Article in English | MEDLINE | ID: mdl-25709832

ABSTRACT

BACKGROUND: Animals adjust activity budgets as competing demands for limited time and energy shift across life history phases. For far-ranging migrants and especially pelagic seabirds, activity during breeding and migration are generally well studied but the "overwinter" phase of non-breeding has received less attention. Yet this is a critical time for recovery from breeding, plumage replacement and gaining energy stores for return migration and the next breeding attempt. We aimed to identify patterns in daily activity budgets (i.e. time in flight, floating on the water's surface and active foraging) and associated spatial distributions during overwinter for the laysan Phoebastria immutabilis and black-footed P. nigripes albatrosses using state-space models and generalized additive mixed-effects models (GAMMs). We applied these models to time-series of positional and immersion-state data from small light- and conductivity-based data loggers. RESULTS: During overwinter, both species exhibited a consistent 'quasi-flightless' stage beginning c. 30 days after initiating migration and lasting c. 40 days, characterized by frequent long bouts of floating, very little sustained flight, and infrequent active foraging. Minimal daily movements were made within localized areas during this time; individual laysan albatross concentrated into the northwest corner of the Pacific while black-footed albatross spread widely across the North Pacific Ocean basin. Activity gradually shifted toward increased time in flight and active foraging, less time floating, and greater daily travel distances until colony return c. 155 days after initial departure. CONCLUSIONS: Our results demonstrate that these species make parallel adjustments to activity budgets at a daily time-scale within the overwinter phase of non-breeding despite different at-sea distributions and phenologies. The 'quasi-flightless' stage likely reflects compromised flight from active wing moult while the subsequent increase in activity may occur as priorities shift toward mass gain for breeding. The novel application of a GAMM-based approach used in this study offers the possibility of identifying population-level patterns in shifting activity budgets over extended periods while allowing for individual-level variation in the timing of events. The information gained can also help to elucidate the whereabouts of areas important at different times across life history phases for far-ranging migrants.

2.
Ecol Appl ; 19(1): 55-68, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19323173

ABSTRACT

For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall uncertainty under which a population manager must make a decision. In capture-recapture studies, imperfect detection of individuals, unobservable life-history states, local movement outside study areas, and tag loss can cause bias or precision problems with estimates of population parameters. Furthermore, excessive disturbance to individuals during capture-recapture sampling may be of concern because disturbance may have demographic consequences. We address these problems using as an example a monitoring program for Black-footed Albatross (Phoebastria nigripes) and Laysan Albatross (Phoebastria immutabilis) nesting populations in the northwestern Hawaiian Islands. To mitigate these estimation problems, we describe a synergistic combination of sampling design and modeling approaches. Solutions include multiple capture periods per season and multistate, robust design statistical models, dead recoveries and incidental observations, telemetry and data loggers, buffer areas around study plots to neutralize the effect of local movements outside study plots, and double banding and statistical models that account for band loss. We also present a variation on the robust capture-recapture design and a corresponding statistical model that minimizes disturbance to individuals. For the albatross case study, this less invasive robust design was more time efficient and, when used in combination with a traditional robust design, reduced the standard error of detection probability by 14% with only two hours of additional effort in the field. These field techniques and associated modeling approaches are applicable to studies of most taxa being marked and in some cases have individually been applied to studies of birds, fish, herpetofauna, and mammals.


Subject(s)
Charadriiformes/physiology , Ecosystem , Research Design , Animals , Models, Biological , Models, Statistical , Population Dynamics , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...