Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 9: 921, 2018.
Article in English | MEDLINE | ID: mdl-30065659

ABSTRACT

In many natural environments, organisms get exposed to low temperature and/or to strong temperature shifts. Also, standard preservation protocols for live cells or tissues involve ultradeep freezing in or above liquid nitrogen (-196°C or -150°C, respectively). To which extent these conditions cause cold- or cryostress has rarely been investigated systematically. Using ATP content as an indicator of the physiological state of cells, we found that representatives of bacteria, fungi, algae, plant tissue, as well as plant and human cell lines exhibited similar responses during freezing and thawing. Compared to optimum growth conditions, the cellular ATP content of most model organisms decreased significantly upon treatment with cryoprotectant and cooling to up to -196°C. After thawing and a longer period of regeneration, the initial ATP content was restored or even exceeded the initial ATP levels. To assess the implications of cellular ATP concentration for the physiology of cryostress, cell viability was determined in parallel using independent approaches. A significantly positive correlation of ATP content and viability was detected only in the cryosensitive algae Chlamydomonas reinhardtii SAG 11-32b and Chlorella variabilis NC64A, and in plant cell lines of Solanum tuberosum. When comparing mesophilic with psychrophilic bacteria of the same genera, and cryosensitive with cryotolerant algae, ATP levels of actively growing cells were generally higher in the psychrophilic and cryotolerant representatives. During exposure to ultralow temperatures, however, psychrophilic and cryotolerant species showed a decline in ATP content similar to their mesophilic or cryosensitive counterparts. Nevertheless, psychrophilic and cryotolerant species attained better culturability after freezing. Cellular ATP concentrations and viability measurements thus monitor different features of live cells during their exposure to ultralow temperatures and cryostress.

2.
Biomacromolecules ; 13(8): 2349-58, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22758219

ABSTRACT

Macroporous scaffolds with adaptable mechanical and biomolecular properties can be instrumental in enabling cell-based therapies. To meet these requirements, a cryostructuration method was adapted to prepare spongy hydrogels based on chemically cross-linked star-shaped poly(ethylene glycol) (starPEG) and heparin. Subzero temperature treatment of the gel forming reaction mixtures and subsequent lyophilization of the incompletely frozen gels resulted in macroporous biohybrid cryogels showing rapid swelling, porosity of up to 92% with interconnected large pores (30-180 µm), low bulk stiffness, and high mechanical stability upon compression. The applicability of the cryogel scaffolds was investigated using human umbilical vein endothelial cells. Cell attachment and three-dimensional spreading resulted in evenly distributed viable cells within the macroporous starPEG-heparin materials, demonstrating the significant translational potential of the developed three-dimensional cell carriers.


Subject(s)
Cryogels/chemical synthesis , Heparin/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Adsorption , Algorithms , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Adhesion , Cell Survival , Cells, Cultured , Compressive Strength , Cross-Linking Reagents/chemistry , Cryogels/chemistry , Elastic Modulus , Ethyldimethylaminopropyl Carbodiimide/chemistry , Human Umbilical Vein Endothelial Cells/physiology , Human Umbilical Vein Endothelial Cells/ultrastructure , Humans , Molecular Conformation , Permeability , Porosity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...