Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 25(10): 1160-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22354667

ABSTRACT

Many anomalies exist in the resting (31) P muscle spectra of boys with Duchenne muscular dystrophy (DMD) but few have been reported in Golden Retriever muscular dystrophy (GRMD), the closest existing animal model for DMD. Because GRMD is recommended for preclinical evaluation of therapies and quantitative outcome measures are needed, we investigated anomalies of (31) P NMRS in tibial cranial and biceps femoris muscles from 14 GRMD compared to 9 control (CONT) dogs. Alterations observed in DMD children - low phosphocreatine and high phospho-monoesters and -diesters - were all found in GRMD but increased pH was not. More surprisingly, inorganic phosphate (Pi) appeared to present a prominent splitting with an enhanced Pi(b) resonance at 0.3 ppm downfield of Pi(a) . Assuming that both resonances are Pi, the pH for Pi(a) in GRMD corresponded to a physiological intracellular pH(a) (6.97 ± 0.05), while pH(b) approached the extracellular range (7.27 ± 0.10) and correlated with pH(a) in GRMD (R(2) = 0.65). Both Pi(a) and Pi(b) were elevated compared to CONT and Pi(a) increased with age for GRMD (R(2) = 0.48, p < 0.001). Magnetisation transfer experiments between γATP and Pi were conducted to better characterise Pi pools. Equal T1 relaxation times for Pi(b) and Pi(a) did not support a mitochondrial origin of Pi(b) . We suggest that Pi(b) could originate from degenerating hypercontracted cells that have a leaky membrane and inadequate cell homeostasis and pH regulation. Pi(b) showed minimal chemical exchange in all dogs, while the exchange rate of Pi(a) was reduced in GRMD and might extraneously reflect low glycolytic activity in DMD. Taken together, the ensemble of (31) P NMRS alterations identifies muscle dysfunction and could provide useful biomarkers of therapeutic efficacy. Furthermore, among these, two might relate more specifically to dystrophic processes and merit further investigation: one is the existence of the enhanced alkaline Pi(b) pool; the other, mechanisms by which membrane disruption might increase phosphodiesters in dystrophy.


Subject(s)
Magnetic Resonance Spectroscopy , Metabolome , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/metabolism , Phosphates/metabolism , Animals , Dogs , Magnetic Phenomena , Muscular Dystrophy, Animal/pathology , Phosphorus Isotopes , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...