Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 118(12): 3451-60, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24568715

ABSTRACT

In this work we investigate the thermodiffusion behavior of microemulsion droplets of the type H2O/n-alkane/C12E5 (pentaethylene glycol monododecyl ether) using the n-alkanes: n-octane, n-decane, n-dodecane, and n-tetradecane. In order to determine the thermodiffusion behavior of these microemulsion droplets, we apply the infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS) technique. We measure the Soret coefficient (ST) as function of the structure upon approaching the emulsification failure boundary (efb) and as a function of the radius of the spherical o/w microemulsion droplets close to the efb. By varying the chain length of the n-alkanes, we are able to study the thermodiffusion behavior of spherical o/w microemulsion droplets of different sizes at the same temperature. In the investigated range a linear dependence of the Soret coefficient as function of the radius was found. By use of a proposed relationship between the Soret coefficient and the temperature dependence of the interfacial tension, the transition layer l could be determined for the first time. Additionally, small angle neutron scattering (SANS) experiments are performed to determine the size and to prove that the shape of the microemulsion droplets is spherical close to the efb. Accordingly, the scattering curves could be quantitatively described by a combination of a spherical core-shell form factor and sticky hard sphere structure factor.


Subject(s)
Alkanes/chemistry , Emulsions , Models, Chemical , Surface-Active Agents/chemistry , Molecular Structure , Neutron Diffraction , Scattering, Small Angle , Temperature , Water
2.
J Phys Chem B ; 117(18): 5614-22, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23534821

ABSTRACT

Here we investigate the thermal diffusion behavior of the nonionic microemulsion water/n-decane/pentaethylene glycol monododecyl ether (C12E5). We study the dependence of the Soret coefficient on the structure and composition by infrared thermal diffusion Rayleigh scattering. The form and size of the microemulsion structure is characterized by dynamic light scattering and small angle neutron scattering. The system was examined in the one-phase region between the emulsification failure boundary and the near critical boundary, where oil swollen nanostructures stabilized by an amphiphilic surfactant film are dispersed in a continuous water phase. The size and shape of these structures as well as the interfacial properties of microemulsions can be varied by changing temperature and composition, which allows a systematic study of their influence on the thermal diffusion properties. In addition, we analyze the relationship between the Soret coefficient and the temperature dependence of the interfacial tension as proposed by A. Parola and R. Piazza (Eur. Phys. J. E 2004, 15, 255-263) and find reasonable agreement for spherical microemulsion droplets.


Subject(s)
Alkanes/chemistry , Ethers/chemistry , Polyethylene Glycols/chemistry , Water/chemistry , Diffusion , Emulsions/chemistry , Molecular Structure , Temperature
3.
J Phys Chem B ; 116(47): 13889-97, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23131101

ABSTRACT

We present a new type of thermogravitational (TG) column, a so-called TG microcolumn with transparent windows and a very small sample volume of less than 50 µL. The TG microcolumn has a planar geometry with a thickness of 0.523 ± 0.004 mm, a height of 30 mm, and a width of 3 mm. The concentration difference between two points at different heights is measured with an interferometer using active phase control. From the concentration difference we can determine the thermal diffusion coefficient, D(T), using the refractive index variation with concentration, which has to be determined independently. We studied the three binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene with a concentration of 50 wt % at a temperature of 298 K. The thermal diffusion coefficients agree within a few percent with the proposed benchmark values. In addition we investigated also the binary mixture toluene/n-hexane and compare the results with literature values. For the investigated mixtures the typical measurement times were between 30 min and 2 h with an applied temperature difference of ΔT = 6 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...