Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38381406

ABSTRACT

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Cycle , Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-myc , Receptors, Estrogen , Signal Transduction , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Apoptosis/drug effects , Animals , Mice , Receptors, Estrogen/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Cell Cycle/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , CRISPR-Cas Systems
2.
Nat Commun ; 14(1): 5474, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673883

ABSTRACT

Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes.


Subject(s)
Proprotein Convertase 9 , Translocation, Genetic , Animals , Mice , Proprotein Convertase 9/genetics , CRISPR-Cas Systems/genetics , Mutation , Endonucleases/genetics , Streptococcus pyogenes/genetics
3.
J Rheumatol ; 50(5): 671-675, 2023 05.
Article in English | MEDLINE | ID: mdl-36379578

ABSTRACT

OBJECTIVE: Genetics play an important role in systemic lupus erythematosus (SLE) pathogenesis. We calculated the prevalence of rare variants in known monogenic lupus genes among children suspected of monogenic lupus. METHODS: We completed paired-end genome-wide sequencing (whole genome sequencing [WGS] or whole exome sequencing) in patients suspected of monogenic lupus, and focused on 36 monogenic lupus genes. We prioritized rare (minor allele frequency < 1%) exonic, nonsynonymous, and splice variants with predicted pathogenicity classified as deleterious variants (Combined Annotation Dependent Depletion [CADD], PolyPhen2, and Sorting Intolerant From Tolerant [SIFT] scores). Additional filtering restricted to predicted damaging variants by considering reported zygosity. In those with WGS (n = 69), we examined copy number variants (CNVs) > 1 kb in size. We created additive non-HLA and HLA SLE genetic risk scores (GRSs) using common SLE-risk single-nucleotide polymorphisms. We tested the relationship between SLE GRSs and the number of rare variants with multivariate logistic models, adjusted for sex, ancestry, and age of diagnosis. RESULTS: The cohort included 71 patients, 80% female, with a mean age at diagnosis of 8.9 (SD 3.2) years. We identified predicted damaging variants in 9 (13%) patients who were significantly younger at diagnosis compared to those without a predicted damaging variant (6.8 [SD 2.1] years vs 9.2 [SD 3.2] years, P = 0.01). We did not identify damaging CNVs. There was no significant association between non-HLA or HLA SLE GRSs and the odds of carrying ≥ 1 rare variant in multivariate analyses. CONCLUSION: In a cohort of patients with suspected monogenic lupus who underwent genome-wide sequencing, 13% carried rare predicted damaging variants for monogenic lupus. Additional studies are needed to validate our findings.


Subject(s)
Lupus Erythematosus, Systemic , Humans , Child , Female , Male , Lupus Erythematosus, Systemic/genetics , Base Sequence , Sequence Analysis, DNA , Exome Sequencing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
4.
Ther Adv Med Oncol ; 14: 17588359221113269, 2022.
Article in English | MEDLINE | ID: mdl-35923923

ABSTRACT

Background: Inflammatory breast cancer (IBC) is a rare and understudied disease, with 40% of cases presenting with human epidermal growth factor receptor 2 (HER2)-positive subtype. The goals of this study were to (i) assess the pathologic complete response (pCR) rate of short-term neoadjuvant dual-HER2-blockade and paclitaxel, (ii) contrast baseline and on-treatment transcriptional profiles of IBC tumor biopsies associated with pCR, and (iii) identify biological pathways that may explain the effect of neoadjuvant therapy on tumor response. Patients and Methods: A single-arm phase II trial of neoadjuvant trastuzumab (H), pertuzumab (P), and paclitaxel for 16 weeks was completed among patients with newly diagnosed HER2-positive IBC. Fresh-frozen tumor biopsies were obtained pretreatment (D1) and 8 days later (D8), following a single dose of HP, prior to adding paclitaxel. We performed RNA-sequencing on D1 and D8 tumor biopsies, identified genes associated with pCR using differential gene expression analysis, identified pathways associated with pCR using gene set enrichment and gene expression deconvolution methods, and compared the pCR predictive value of principal components derived from gene expression profiles by calculating and area under the curve for D1 and D8 subsets. Results: Twenty-three participants were enrolled, of whom 21 completed surgery following neoadjuvant therapy. Paired longitudinal fresh-frozen tumor samples (D1 and D8) were obtained from all patients. Among the 21 patients who underwent surgery, the pCR and the 4-year disease-free survival were 48% (90% CI 0.29-0.67) and 90% (95% CI 66-97%), respectively. The transcriptional profile of D8 biopsies was found to be more predictive of pCR (AUC = 0.91, 95% CI: 0.7993-1) than the D1 biopsies (AUC = 0.79, 95% CI: 0.5905-0.9822). Conclusions: In patients with HER2-positive IBC treated with neoadjuvant HP and paclitaxel for 16 weeks, gene expression patterns of tumor biopsies measured 1 week after treatment initiation not only offered different biological information but importantly served as a better predictor of pCR than baseline transcriptional analysis. Trial Registration: ClinicalTrials.gov identifier: NCT01796197 (https://clinicaltrials.gov/ct2/show/NCT01796197); registered on February 21, 2013.

5.
J Rheumatol ; 49(10): 1146-1151, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35649546

ABSTRACT

OBJECTIVE: Macrophage activation syndrome (MAS), a life-threatening complication of systemic lupus erythematosus (SLE), resembles familial hemophagocytic lymphohistiocytosis (HLH), an inherited disorder of hyperinflammation. We compared the proportion of patients with childhood-onset SLE (cSLE) with and without MAS who carried low-frequency HLH nonsynonymous variants. METHODS: We enrolled patients from the Lupus Clinic at SickKids, Toronto. Demographic and clinical features were extracted from the SLE database and ancestry was genetically inferred using multiethnic genotyping array data. Patients with MAS (based on expert diagnosis) underwent either paired-end whole-exome sequencing (WES; read depth: 70-118X) or whole-genome sequencing (WGS). Patients without MAS had WGS (read depth: 37-40X). In 16 HLH genes, we prioritized low-frequency (minor allele frequency [MAF] < 0.05) exonic nonsynonymous variants. We compared the proportion of patients with and without MAS carrying HLH variants (Fisher exact test, P < 0.05). MAFs were compared to an ancestrally matched general population (Trans-Omics for Precision Medicine [TOPMed] and Genome Aggregation Database [gnomAD]). RESULTS: The study included 81 patients with cSLE, 19 of whom had MAS. We identified 47 unique low-frequency nonsynonymous HLH variants. There was no difference in the proportion of patients with and without MAS carrying ≥ 1 HLH variants (37% vs 47%, P = 0.44). The MAS cohort did not carry more HLH variants when compared to an ancestrally matched general population. CONCLUSION: In a single-center multiethnic cSLE cohort, we found no difference in the proportion of patients with MAS carrying nonsynonymous HLH genetic variants compared to patients without MAS. To our knowledge, this is the first study to examine the frequency of HLH genetic variants in relation to MAS among patients with cSLE. Future studies are required to validate our findings.


Subject(s)
Lupus Erythematosus, Systemic , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/complications , Cohort Studies
6.
Cell Rep ; 39(4): 110752, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476984

ABSTRACT

High-risk forms of B-acute lymphoblastic leukemia (B-ALL) remain a therapeutic challenge. Leukemia-initiating cells (LICs) self-renew and spark relapse and therefore have been the subject of intensive investigation; however, the properties of LICs in high-risk B-ALL are not well understood. Here, we use single-cell transcriptomics and quantitative xenotransplantation to understand LICs in MLL-rearranged (MLL-r) B-ALL. Compared with reported LIC frequencies in acute myeloid leukemia (AML), engraftable LICs in MLL-r B-ALL are abundant. Although we find that multipotent, self-renewing LICs are enriched among phenotypically undifferentiated B-ALL cells, LICs with the capacity to replenish the leukemic cellular diversity can emerge from more mature fractions. While inhibiting oxidative phosphorylation blunts blast proliferation, this intervention promotes LIC emergence. Conversely, inhibiting hypoxia and glycolysis impairs MLL-r B-ALL LICs, providing a therapeutic benefit in xenotransplantation systems. These findings provide insight into the aggressive nature of MLL-r B-ALL and provide a rationale for therapeutic targeting of hypoxia and glycolysis.


Subject(s)
Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Glycolysis , Humans , Hypoxia , Leukemia, Myeloid, Acute/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
8.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33653947

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Glutamate-Ammonia Ligase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Enzyme Stability , Glutamate-Ammonia Ligase/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Neoplasm Proteins/genetics , Pancreatic Neoplasms/genetics
9.
Nat Commun ; 11(1): 6421, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339818

ABSTRACT

Sexual reproduction is almost ubiquitous among extant eukaryotes. As most asexual lineages are short-lived, abandoning sex is commonly regarded as an evolutionary dead end. Still, putative anciently asexual lineages challenge this view. One of the most striking examples are bdelloid rotifers, microscopic freshwater invertebrates believed to have completely abandoned sexual reproduction tens of Myr ago. Here, we compare whole genomes of 11 wild-caught individuals of the bdelloid rotifer Adineta vaga and present evidence that some patterns in its genetic variation are incompatible with strict clonality and lack of genetic exchange. These patterns include genotype proportions close to Hardy-Weinberg expectations within loci, lack of linkage disequilibrium between distant loci, incongruent haplotype phylogenies across the genome, and evidence for hybridization between divergent lineages. Analysis of triallelic sites independently corroborates these findings. Our results provide evidence for interindividual genetic exchange and recombination in A. vaga, a species previously thought to be anciently asexual.


Subject(s)
Genome , Recombination, Genetic/genetics , Rotifera/genetics , Alleles , Animals , Genetics, Population , Germ Cells/metabolism , Haplotypes/genetics , Linkage Disequilibrium/genetics , Phylogeny , Whole Genome Sequencing
10.
Genome Biol Evol ; 12(9): 1493-1503, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32653919

ABSTRACT

Repeated emergence of similar adaptations is often explained by parallel evolution of underlying genes. However, evidence of parallel evolution at amino acid level is limited. When the analyzed species are highly divergent, this can be due to epistatic interactions underlying the dynamic nature of the amino acid preferences: The same amino acid substitution may have different phenotypic effects on different genetic backgrounds. Distantly related species also often inhabit radically different environments, which makes the emergence of parallel adaptations less likely. Here, we hypothesize that parallel molecular adaptations are more prevalent between closely related species. We analyze the rate of parallel evolution in genome-size sets of orthologous genes in three groups of species with widely ranging levels of divergence: 46 species of the relatively recent lake Baikal amphipod radiation, a species flock of very closely related cichlids, and a set of significantly more divergent vertebrates. Strikingly, in genes of amphipods, the rate of parallel substitutions at nonsynonymous sites exceeded that at synonymous sites, suggesting rampant selection driving parallel adaptation. At sites of parallel substitutions, the intraspecies polymorphism is low, suggesting that parallelism has been driven by positive selection and is therefore adaptive. By contrast, in cichlids, the rate of nonsynonymous parallel evolution was similar to that at synonymous sites, whereas in vertebrates, this rate was lower than that at synonymous sites, indicating that in these groups of species, parallel substitutions are mainly fixed by drift.


Subject(s)
Amphipoda/genetics , Cichlids/genetics , Evolution, Molecular , Africa, Eastern , Amino Acid Substitution , Animals , Lakes , Phylogeny , Polymorphism, Genetic , Russia
12.
Biomed Res Int ; 2020: 4935386, 2020.
Article in English | MEDLINE | ID: mdl-32149110

ABSTRACT

Growing evidence suggests that increased arginase activity affects vital bioprocesses in various systems and universally mediates the pathogenesis of numerous metabolic diseases. The adverse effects of arginase are associated with a severe decline in L-arginine bioavailability, which leads to nitric oxide synthase substrate insufficiency, uncoupling, and, eventually, superoxide anion generation and substantial reduction of nitric oxide (NO) synthesis. In cooperation, it contributes to chronic oxidative stress and endothelial dysfunction, which might lead to hypertension and atherosclerosis. Recent preclinical investigations point arginase as a promising therapeutic target in ameliorating metabolic and vascular dysfunctions. In the present study, adult rats with inherited stress-induced arterial hypertension (ISIAH) were used as a model of hypertension. Wistar rats served as normotensive controls. Experimental animals were intraperitoneally administered for seven days with nonproteinogenic amino acid L-norvaline (30 mg/kg/day), which is a potent arginase inhibitor, or with the vehicle. Blood pressure (BP), body weight, and diuresis were monitored. The changes in blood and urine levels of creatinine, urea, and NO metabolites were analyzed. We observed a significant decline in BP and induced diuresis in ISIAH rats following the treatment. The same procedure did not affect the BP of control animals. Remarkably, the treatment had no influence upon glomerular filtration rate in two experimental groups, just like the daily excretion of creatinine and urea. Conversely, NO metabolite levels were amplified in normotonic but not in hypertensive rats following the treatment. The data indicate that L-norvaline is a potential antihypertensive agent and deserves to be clinically investigated. Moreover, we suggest that changes in blood and urine are causally related to the effect of L-norvaline upon BP regulation.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Diuresis/drug effects , Hypertension , Valine/analogs & derivatives , Animals , Creatinine/blood , Creatinine/urine , Disease Models, Animal , Hypertension/genetics , Hypertension/metabolism , Male , Rats , Rats, Wistar , Urea/blood , Urea/urine , Uric Acid/blood , Uric Acid/urine , Valine/pharmacology
14.
Genes Dev ; 33(9-10): 498-510, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30842215

ABSTRACT

Developmental signal transduction pathways act diversely, with context-dependent roles across systems and disease types. Glioblastomas (GBMs), which are the poorest prognosis primary brain cancers, strongly resemble developmental systems, but these growth processes have not been exploited therapeutically, likely in part due to the extreme cellular and genetic heterogeneity observed in these tumors. The role of Wnt/ßcatenin signaling in GBM stem cell (GSC) renewal and fate decisions remains controversial. Here, we report context-specific actions of Wnt/ßcatenin signaling in directing cellular fate specification and renewal. A subset of primary GBM-derived stem cells requires Wnt proteins for self-renewal, and this subset specifically relies on Wnt/ßcatenin signaling for enhanced tumor burden in xenograft models. In an orthotopic Wnt reporter model, Wnthi GBM cells (which exhibit high levels of ßcatenin signaling) are a faster-cycling, highly self-renewing stem cell pool. In contrast, Wntlo cells (with low levels of signaling) are slower cycling and have decreased self-renewing potential. Dual inhibition of Wnt/ßcatenin and Notch signaling in GSCs that express high levels of the proneural transcription factor ASCL1 leads to robust neuronal differentiation and inhibits clonogenic potential. Our work identifies new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity, which deserve further exploration therapeutically.


Subject(s)
Cell Differentiation/genetics , Neoplastic Stem Cells/cytology , Signal Transduction , Cell Line, Tumor , Cell Self Renewal/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/physiopathology , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
15.
Am J Hum Genet ; 104(3): 466-483, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827497

ABSTRACT

Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel "negative" cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual's fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.


Subject(s)
Genetic Markers , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Muscular Diseases/diagnosis , Mutation , Rare Diseases/diagnosis , Adolescent , Adult , Cells, Cultured , Child , Cohort Studies , Female , Humans , Male , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Diseases/genetics , Rare Diseases/genetics , Transcriptome , Young Adult
17.
Neuromuscul Disord ; 28(7): 592-596, 2018 07.
Article in English | MEDLINE | ID: mdl-29759639

ABSTRACT

Mutations in POMT2 are most commonly associated with Walker-Warburg syndrome and Muscle-Eye-Brain disease, but can also cause limb girdle muscular dystrophy (LGMD2N). We report a case of LGMD due to a novel mutation in POMT2 unmasked by uniparental isodisomy. The patient experienced proximal muscle weakness from three years of age with minimal progression. She developed progressive contractures and underwent unilateral Achilles tenotomy. By age 11, she had borderline low left ventricular ejection fraction and mild restrictive lung disease. Muscle biopsy showed mild dystrophic changes with selective reduction in α-dystroglycan immunostaining. Sequencing of POMT2 showed a novel homozygous c.1502A>C variant that was predicted to be probably pathogenic. Fibroblast complementation studies showed lack of functional glycosylation rescued by wild-type POMT2 expression. Chromosomal microarray showed a single 15 Mb copy number neutral loss of heterozygosity on chromosome 14 encompassing POMT2. RNAseq verified homozygosity at this locus. Together, our findings indicate maternal uniparental isodisomy causing LGMD2N.


Subject(s)
Mannosyltransferases/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Uniparental Disomy , Adolescent , Dystroglycans/metabolism , Female , Humans
18.
Mol Ecol ; 26(2): 536-553, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27859915

ABSTRACT

Endemic species flocks inhabiting ancient lakes, oceanic islands and other long-lived isolated habitats are often interpreted as adaptive radiations. Yet molecular evidence for directional selection during species flocks radiation is scarce. Using partial transcriptomes of 64 species of Lake Baikal (Siberia, Russia) endemic amphipods and two nonendemic outgroups, we report a revised phylogeny of this species flock and analyse evidence for positive selection within the endemic lineages. We confirm two independent invasions of amphipods into Baikal and demonstrate that several morphological features of Baikal amphipods, such as body armour and reduction in appendages and sensory organs, evolved in several lineages in parallel. Radiation of Baikal amphipods has been characterized by short phylogenetic branches and frequent episodes of positive selection which tended to be more frequent in the early phase of the second invasion of amphipods into Baikal when the most intensive diversification occurred. Notably, signatures of positive selection are frequent in genes encoding mitochondrial membrane proteins with electron transfer chain and ATP synthesis functionality. In particular, subunits of both the membrane and substrate-level ATP synthases show evidence of positive selection in the plankton species Macrohectopus branickii, possibly indicating adaptation to active plankton lifestyle and to survival under conditions of low temperature and high hydrostatic pressures known to affect membranes functioning. Other functional categories represented among genes likely to be under positive selection include Ca-binding muscle-related proteins, possibly indicating adaptation to Ca-deficient low mineralization Baikal waters.


Subject(s)
Amphipoda/classification , Genetic Speciation , Phylogeny , Selection, Genetic , Transcriptome , Adaptation, Biological/genetics , Animals , Lakes , Siberia
19.
Can J Physiol Pharmacol ; 94(11): 1122-1131, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27454106

ABSTRACT

An experimental mouse model of dyslipidemia and atherosclerosis was utilized to study the generation of methylarginines in vivo, as well as any potential behavioral changes in mice associated with the production of excess methylarginines. Following 14 weeks of poloxamer 407 treatment, mice developed atherosclerosis and the plasma concentrations of monomethylarginine and asymmetric dimethylarginine were found to be significantly greater than corresponding concentrations in control mice. This finding may have contributed to the development of aortic atherosclerotic lesions in poloxamer-treated mice by interfering with nitric oxide availability and, hence, normal function of vascular endothelium. Poloxamer-407-treated mice also showed a significant decrease in locomotor and exploratory activity, together with signs of emotional stress and anxiety relative to controls. Passive avoidance testing to assess learning and memory provided suggestive evidence that poloxamer-treated mice could potentially be characterized as having undergone a disruption in the process of forgetting about an aversive event, specifically, a foot shock, when compared with control mice. Thus, it is also suggested that the increase in both plasma monomethylarginine and asymmetric dimethylarginine in poloxamer-407-treated mice may somehow influence learning and memory, because endothelial dysfunction caused by reduced nitric oxide availability has been hypothesized to negatively influence cognitive function.

20.
Genome Biol Evol ; 8(6): 1971-9, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27324920

ABSTRACT

Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that "improve" the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that "impair" it. SNPs are rarer at PAS of "unique" polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease.


Subject(s)
Genome, Human , Polymorphism, Single Nucleotide/genetics , RNA 3' Polyadenylation Signals/genetics , RNA, Messenger/genetics , Exons/genetics , Gene Frequency , Humans , Polyadenylation/genetics , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...