Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 10(3): e0070222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35652638

ABSTRACT

Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Cell Cycle , Cell Differentiation , Cyclins/metabolism , Humans , Rats , Toxoplasma/genetics
2.
mBio ; 13(1): e0356121, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35130726

ABSTRACT

Opportunistic parasites of the Apicomplexa phylum use a variety of division modes built on two types of cell cycles that incorporate two distinctive mechanisms of mitosis: uncoupled from and coupled to parasite budding. Parasites have evolved novel factors to regulate such unique replication mechanisms that are poorly understood. Here, we have combined genetics, quantitative fluorescence microscopy, and global proteomics approaches to examine endodyogeny in Toxoplasma gondii dividing by mitosis coupled to cytokinesis. In the current study, we focus on the steps controlled by the recently described atypical Cdk-related kinase T. gondii Crk6 (TgCrk6). While inspecting protein complexes, we found that this previously orphaned TgCrk6 kinase interacts with a parasite-specific atypical cyclin, TgCyc1. We built conditional expression models and examined primary cell cycle defects caused by the lack of TgCrk6 or TgCyc1. Quantitative microscopy assays revealed that tachyzoites deficient in either TgCrk6 or the cyclin partner TgCyc1 exhibit identical mitotic defects, suggesting cooperative action of the complex components. Further examination of the mitotic structures indicated that the TgCrk6/TgCyc1 complex regulates metaphase. This novel finding confirms a functional spindle assembly checkpoint (SAC) in T. gondii. Measuring global changes in protein expression and phosphorylation, we found evidence that canonical activities of the Toxoplasma SAC are intertwined with parasite-specific tasks. Analysis of phosphorylation motifs suggests that Toxoplasma metaphase is regulated by CDK, mitogen-activated kinase (MAPK), and Aurora kinases, while the TgCrk6/TgCyc1 complex specifically controls the centromere-associated network. IMPORTANCE The rate of Toxoplasma tachyzoite division directly correlates with the severity of the disease, toxoplasmosis, which affects humans and animals. Thus, a better understanding of the tachyzoite cell cycle would offer much-needed efficient tools to control the acute stage of infection. Although tachyzoites divide by binary division, the cell cycle architecture and regulation differ significantly from the conventional binary fission of their host cells. Unlike the unidirectional conventional cell cycle, the Toxoplasma budding cycle is braided and is regulated by multiple essential Cdk-related kinases (Crks) that emerged in the place of missing conventional cell cycle regulators. How these novel Crks control apicomplexan cell cycles is largely unknown. Here, we have discovered a novel parasite-specific complex, TgCrk6/TgCyc1, that orchestrates a major mitotic event, the spindle assembly checkpoint. We demonstrated that tachyzoites incorporated parasite-specific tasks in the canonical checkpoint functions.


Subject(s)
Protozoan Proteins , Toxoplasma , Toxoplasmosis , Animals , Cell Cycle , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , M Phase Cell Cycle Checkpoints , Proto-Oncogene Proteins c-crk/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/genetics , Toxoplasma/metabolism , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
3.
mBio ; 8(4)2017 08 22.
Article in English | MEDLINE | ID: mdl-28830940

ABSTRACT

Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling this knowledge gap cannot be accomplished by mining recent whole-genome sequencing data because apicomplexan cell cycles differ substantially and lack many of the key regulatory factors of well-studied yeast and mammalian cell division models. We have utilized forward genetics to discover essential factors that regulate cell division in these parasites using the Toxoplasma gondii model. An example of this approach is described here with the discovery of a putative E3 ligase/protein kinase mechanism involved in regulating chromosome replication and mitotic processes of asexual stage parasites.


Subject(s)
Cell Cycle/genetics , Gene Expression Regulation , Protozoan Proteins/metabolism , Spindle Apparatus/metabolism , Toxoplasma/genetics , Toxoplasma/physiology , Cell Cycle Checkpoints , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomes/genetics , Chromosomes/physiology , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , DNA Replication , DNA Topoisomerases/genetics , DNA Topoisomerases/metabolism , Mitosis , Nuclear Envelope/genetics , Protozoan Proteins/genetics , Toxoplasmosis/parasitology , Ubiquitin-Protein Ligases/metabolism
4.
mBio ; 5(6): e02021, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25467441

ABSTRACT

UNLABELLED: Apicomplexa are obligate intracellular parasites that cause important diseases in humans and animals. Manipulating the pathogen genome is the most direct way to understand the functions of specific genes in parasite development and pathogenesis. In Toxoplasma gondii, nonhomologous recombination is typically highly favored over homologous recombination, a process required for precise gene targeting. Several approaches, including the use of targeting vectors that feature large flanks to drive site-specific recombination, have been developed to overcome this problem. We have generated a new large-insert repository of T. gondii genomic DNA that is arrayed and sequenced and covers 95% of all of the parasite's genes. Clones from this fosmid library are maintained at single copy, which provides a high level of stability and enhances our ability to modify the organism dramatically. We establish a robust recombineering pipeline and show that our fosmid clones can be easily converted into gene knockout constructs in a 4-day protocol that does not require plate-based cloning but can be performed in multiwell plates. We validated this approach to understand gene function in T. gondii and produced a conditional null mutant for a nucleolar protein belonging to the NOL1/NOP2/SUN family, and we show that this gene is essential for parasite growth. We also demonstrate a powerful complementation strategy in the context of chemical mutagenesis and whole-genome sequencing. This repository is an important new resource that will accelerate both forward and reverse genetic analysis of this important pathogen. IMPORTANCE: Toxoplasma gondii is an important genetic model to understand intracellular parasitism. We show here that large-insert genomic clones are effective tools that enhance homologous recombination and allow us to engineer conditional mutants to understand gene function. We have generated, arrayed, and sequenced a fosmid library of T. gondii genomic DNA in a copy control vector that provides excellent coverage of the genome. The fosmids are maintained in a single-copy state that dramatically improves their stability and allows modification by means of a simple and highly scalable protocol. We show here that modified and unmodified fosmid clones are powerful tools for forward and reverse genetics.


Subject(s)
Gene Targeting/methods , Genetics, Microbial/methods , Genome, Protozoan , Molecular Biology/methods , Toxoplasma/genetics , Gene Library , Genetic Vectors , Recombination, Genetic
5.
Eukaryot Cell ; 10(9): 1257-63, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21803864

ABSTRACT

Coordinated regulation of gene expression is a hallmark of the Plasmodium falciparum asexual blood-stage development cycle. We report that carbon catabolite repressor protein 4 (CCR4)-associated factor 1 (CAF1) is critical in regulating more than 1,000 genes during malaria parasites' intraerythrocytic stages, especially egress and invasion proteins. CAF1 knockout results in mistimed expression, aberrant accumulation and localization of proteins involved in parasite egress, and invasion of new host cells, leading to premature release of predominantly half-finished merozoites, drastically reducing the intraerythrocytic growth rate of the parasite. This study demonstrates that CAF1 of the CCR4-Not complex is a significant gene regulatory mechanism needed for Plasmodium development within the human host.


Subject(s)
Erythrocytes/parasitology , Gene Deletion , Gene Expression , Host-Parasite Interactions/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Transcription Factors/genetics , Animals , Cell Proliferation , Erythrocytes/pathology , Gene Expression Regulation , Gene Knockout Techniques , Humans , Life Cycle Stages , Malaria, Falciparum/parasitology , Merozoites/metabolism , Oligonucleotide Array Sequence Analysis/methods , Plasmodium falciparum/growth & development , Transcription Factors/metabolism
6.
Biochemistry ; 48(26): 6240-8, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19435321

ABSTRACT

The H-cluster is a complex bridged metal assembly at the active site of [FeFe]-hydrogenases that consists of a [4Fe-4S] subcluster bridged to a 2Fe-containing subcluster with unique nonprotein ligands, including carbon monoxide, cyanide, and a dithiolate ligand of unknown composition. Specific biosynthetic gene products (HydE, HydF, and HydG) responsible for the biosynthesis of the H-cluster and the maturation of active [FeFe]-hydrogenase have previously been identified and shown to be required for the heterologous expression of active [FeFe]-hydrogenase [Posewitz, M. C., et al. (2004) J. Biol. Chem. 279, 25711-25720]. The precise roles of the maturation proteins are unknown; the most likely possibility is that they are directed at the synthesis of the entire 6Fe-containing H-cluster, the 2Fe subcluster, or only the unique ligands of the 2Fe subcluster. The spectroscopic and biochemical characterization of HydA(DeltaEFG) (the [FeFe]-hydrogenase structural protein expressed in the absence of the maturation machinery) reported here indicates that a [4Fe-4S] cluster is incorporated into the H-cluster site. The purified protein in a representative preparation contains Fe (3.1 +/- 0.5 Fe atoms per HydA(DeltaEFG)) and S(2-) (1.8 +/- 0.5 S(2-) atoms per HydA(DeltaEFG)) and exhibits UV-visible spectroscopic features characteristic of iron-sulfur clusters, including a bleaching of the visible chromophore upon addition of dithionite. The reduced protein gave rise to an axial S = (1)/(2) EPR signal (g = 2.04 and 1.91) characteristic of a reduced [4Fe-4S](+) cluster. Mossbauer spectroscopic characterization of (57)Fe-enriched HydA(DeltaEFG) provided further evidence of the presence of a redox active [4Fe-4S](2+/+) cluster. Iron K-edge EXAFS data provided yet further support for the presence of a [4Fe-4S] cluster in HydA(DeltaEFG). These spectroscopic studies were combined with in vitro activation studies that demonstrate that HydA(DeltaEFG) can be activated by the specific maturases only when a [4Fe-4S] cluster is present in the protein. In sum, this work supports a model in which the role of the maturation machinery is to synthesize and insert the 2Fe subcluster and/or its ligands and not the entire 6Fe-containing H-cluster bridged assembly.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Absorptiometry, Photon , Animals , Apoenzymes/biosynthesis , Apoenzymes/chemistry , Apoenzymes/genetics , Biocatalysis , Chlorides , Electron Spin Resonance Spectroscopy , Enzyme Activation , Ferric Compounds/chemistry , Fourier Analysis , Hydrogenase/biosynthesis , Hydrogenase/genetics , Iron/chemistry , Iron-Sulfur Proteins/biosynthesis , Iron-Sulfur Proteins/genetics , Kinetics , Models, Chemical , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Mossbauer , Sulfides/chemistry
7.
FEBS Lett ; 582(15): 2183-7, 2008 Jun 25.
Article in English | MEDLINE | ID: mdl-18501709

ABSTRACT

In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized.


Subject(s)
Bacterial Proteins/biosynthesis , Clostridium acetobutylicum/enzymology , Hydrogenase/biosynthesis , Iron-Sulfur Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Hydrogenase/chemistry , Hydrogenase/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
8.
J Biol Inorg Chem ; 12(4): 443-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17372774

ABSTRACT

The in vitro activation of the [FeFe] hydrogenase is accomplished by combining Escherichia coli cell extracts containing the heterologously expressed inactive HydA with extracts in which hydrogenase-specific maturation proteins HydE, HydF, and HydG are expressed in concert. Interestingly, the process of HydA activation occurs rapidly and in the absence of potential substrates, which suggests that the hydrogenase accessory proteins synthesize an H-cluster precursor that can be quickly transferred to the hydrogenase enzyme to affect activation. HydA activity is observed to be dependent on the protein fraction containing all three accessory proteins expressed in concert and cannot be accomplished with addition of heat-treated extract or extract filtrate, suggesting that the activation of the hydrogenase structural protein is mediated by interaction with the accessory assembly protein(s). These results represent the first important step in understanding the process of H-cluster assembly and provide significant insights into hydrogenase maturation.


Subject(s)
Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Cell Extracts , Clostridium/enzymology , Clostridium/genetics , Enzyme Activation , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrogen/metabolism , Hydrogenase/chemistry , Hydrogenase/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Models, Molecular , Protein Binding , Protein Structure, Tertiary
9.
FEBS Lett ; 580(2): 363-7, 2006 Jan 23.
Article in English | MEDLINE | ID: mdl-16386249

ABSTRACT

Fe-only or FeFe hydrogenases, as they have more recently been termed, possess a uniquely organometallic enzyme active site, termed the H-cluster, where the electronic properties of an iron-sulfur cluster are tuned with distinctly non-biological ligands, carbon monoxide and cyanide. Recently, it was discovered that radical S-adenosylmethionine enzymes were involved in active hydrogenase expression. In the current work, we present a mechanistic scheme for hydrogenase H-cluster biosynthesis in which both carbon monoxide and cyanide ligands can be derived from the decomposition of a glycine radical. The ideas presented have broader implications in the context of the prebiotic origin of amino acids.


Subject(s)
Hydrogenase/chemistry , Protein Conformation , Binding Sites , Carbon Monoxide/metabolism , Cyanides/metabolism , Glycine/chemistry , Glycine/metabolism , Hydrogenase/metabolism , Ligands , Models, Molecular
10.
J Gen Virol ; 85(Pt 6): 1581-1589, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15166442

ABSTRACT

Poliovirus (PV) infection starts with binding to its receptor (PVR), followed by a receptor-aided, temperature-sensitive conformational change of the infectious particle (sedimenting at 160S) to a particle which sediments at 135S. Reported in this communication is the successful incorporation into lipid bilayers of two forms of the receptor: the full-length human receptor and a modified clone in which the extracellular domains of the receptor were fused to a glycosylphosphatidylinositol tail. Addition of virus (160S) to receptor-containing bilayers leads to channel formation, whereas no channels were observed when the receptor-modified viral particle (135S) was added. Increasing the temperature from 21 to 31 degrees C led to a 10-fold increase in the magnitude of the single channel conductance, which can be interpreted as a conformational change in the channel structure. A mutant PV with an amino acid change in VP4 (one of the coat proteins) which is defective in genome uncoating failed to produce channels, suggesting that VP4 might be involved in the channel architecture. These studies provide the first electrophysiological characterization of the interactions between poliovirus and its receptor incorporated into a lipid bilayer membrane. Furthermore, they form the foundation for future studies aiming at defining the molecular architecture of the virus-receptor complex.


Subject(s)
Ion Channels/physiology , Lipid Bilayers/metabolism , Membrane Proteins , Poliovirus/physiology , Receptors, Virus/physiology , Virion/physiology , Amino Acid Sequence , Glycosylphosphatidylinositols/physiology , HeLa Cells , Humans , Ion Channels/chemistry , Molecular Sequence Data , Protein Conformation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...