Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38376378

ABSTRACT

Monitoring antibiotic-resistant bacteria (ARB) and understanding the effects of antimicrobial drugs on the human microbiome and resistome are crucial for public health. However, no study has investigated the association between antimicrobial treatment and the microbiome-resistome relationship in long-term care facilities, where residents act as reservoirs of ARB but are not included in the national surveillance for ARB. We conducted shotgun metagenome sequencing of oral and stool samples from long-term care facility residents and explored the effects of antimicrobial treatment on the human microbiome and resistome using two types of comparisons: cross-sectional comparisons based on antimicrobial treatment history in the past 6 months and within-subject comparisons between stool samples before, during and 2-4 weeks after treatment using a single antimicrobial drug. Cross-sectional analysis revealed two characteristics in the group with a history of antimicrobial treatment: the archaeon Methanobrevibacter was the only taxon that significantly increased in abundance, and the total abundance of antimicrobial resistance genes (ARGs) was also significantly higher. Within-subject comparisons showed that taxonomic diversity did not decrease during treatment, suggesting that the effect of the prescription of a single antimicrobial drug in usual clinical treatment on the gut microbiota is likely to be smaller than previously thought, even among very elderly people. Additional analysis of the detection limit of ARGs revealed that they could not be detected when contig coverage was <2.0. This study is the first to report the effects of usual antimicrobial treatments on the microbiome and resistome of long-term care facility residents.


Subject(s)
Anti-Infective Agents , Microbiota , Aged , Humans , Angiotensin Receptor Antagonists , Cross-Sectional Studies , Long-Term Care , Angiotensin-Converting Enzyme Inhibitors , DNA , Sequence Analysis, DNA
2.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Article in English | MEDLINE | ID: mdl-37314965

ABSTRACT

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Subject(s)
Culicidae , Parasites , Animals , Culicidae/metabolism , Culicidae/parasitology , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Oocysts , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Sporozoites/metabolism
3.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36103257

ABSTRACT

Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies.


Subject(s)
Genomics , Software , Genomics/methods , Genotype , Phenotype , Polymorphism, Genetic
4.
PLoS Comput Biol ; 18(2): e1009801, 2022 02.
Article in English | MEDLINE | ID: mdl-35108259

ABSTRACT

Investigation of the diversity of malaria parasite antigens can help prioritize and validate them as vaccine candidates and identify the most common variants for inclusion in vaccine formulations. Studies of vaccine candidates of the most virulent human malaria parasite, Plasmodium falciparum, have focused on a handful of well-known antigens, while several others have never been studied. Here we examine the global diversity and population structure of leading vaccine candidate antigens of P. falciparum using the MalariaGEN Pf3K (version 5.1) resource, comprising more than 2600 genomes from 15 malaria endemic countries. A stringent variant calling pipeline was used to extract high quality antigen gene 'haplotypes' from the global dataset and a new R-package named VaxPack was used to streamline population genetic analyses. In addition, a newly developed algorithm that enables spatial averaging of selection pressure on 3D protein structures was applied to the dataset. We analysed the genes encoding 23 leading and novel candidate malaria vaccine antigens including csp, trap, eba175, ama1, rh5, and CelTOS. Our analysis shows that current malaria vaccine formulations are based on rare haplotypes and thus may have limited efficacy against natural parasite populations. High levels of diversity with evidence of balancing selection was detected for most of the erythrocytic and pre-erythrocytic antigens. Measures of natural selection were then mapped to 3D protein structures to predict targets of functional antibodies. For some antigens, geographical variation in the intensity and distribution of these signals on the 3D structure suggests adaptation to different human host or mosquito vector populations. This study provides an essential framework for the diversity of P. falciparum antigens to be considered in the design of the next generation of malaria vaccines.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Animals , Humans
5.
PLoS Genet ; 17(5): e1009576, 2021 05.
Article in English | MEDLINE | ID: mdl-34033654

ABSTRACT

Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.


Subject(s)
Alleles , Genome/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Adolescent , Adult , Aging/immunology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Malawi , Young Adult
6.
Cell Host Microbe ; 27(6): 950-962.e7, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32396839

ABSTRACT

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Subject(s)
Antigens, Protozoan/immunology , Immunity, Cellular/immunology , Liver/immunology , Peptides/immunology , Plasmodium berghei/immunology , Ribosomal Proteins/immunology , Animals , Anopheles , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dendritic Cells/immunology , Female , Immunization , Immunologic Memory/immunology , Liver/parasitology , Malaria/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/metabolism , Male , Mice , Mice, Inbred C57BL , Sporozoites/immunology
7.
Innate Immun ; 23(2): 111-127, 2017 02.
Article in English | MEDLINE | ID: mdl-27884946

ABSTRACT

The nematode Caenorhabditis elegans is well established as a system for characterization and discovery of molecular mechanisms mediating microbe-specific inducible innate immune responses to human pathogens. Coxiella burnetii is an obligate intracellular bacterium that causes a flu-like syndrome in humans (Q fever), as well as abortions in domesticated livestock, worldwide. Initially, when wild type C. elegans (N2 strain) was exposed to mCherry-expressing C. burnetii (CCB) a number of overt pathological manifestations resulted, including intestinal distension, deformed anal region and a decreased lifespan. However, nematodes fed autoclave-killed CCB did not exhibit these symptoms. Although vertebrates detect C. burnetii via TLRs, pathologies in tol-1(-) mutant nematodes were indistinguishable from N2, and indicate nematodes do not employ this orthologue for detection of C. burnetii. sek-1(-) MAP kinase mutant nematodes succumbed to infection faster, suggesting that this signaling pathway plays a role in immune activation, as previously shown for orthologues in vertebrates during a C. burnetii infection. C. elegans daf-2(-) mutants are hyper-immune and exhibited significantly reduced pathological consequences during challenge. Collectively, these results demonstrate the utility of C. elegans for studying the innate immune response against C. burnetii and could lead to discovery of novel methods for prevention and treatment of disease in humans and livestock.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/immunology , Coxiella burnetii/immunology , Gram-Negative Bacterial Infections/immunology , MAP Kinase Kinase 4/metabolism , Nerve Tissue Proteins/metabolism , Q Fever/immunology , Receptor, Insulin/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cattle , Gene Knockout Techniques , Hot Temperature , Humans , Immunity, Innate/genetics , MAP Kinase Kinase 4/genetics , Nerve Tissue Proteins/genetics , Receptor, Insulin/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...