Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36289988

ABSTRACT

Epithelial surfaces in humans are home to symbiotic microbes (i.e., microbiota) that influence the defensive function against pathogens, depending on the health of the microbiota. Healthy microbiota contribute to the well-being of their host, in general (e.g., via the gut-brain axis), and their respective anatomical site, in particular (e.g., oral, urogenital, skin, or respiratory microbiota). Despite efforts towards a more responsible use of antibiotics, they are often prescribed for uncomplicated, self-limiting infections and can have a substantial negative impact on the gut microbiota. Treatment alternatives, such as non-steroidal anti-inflammatory drugs, may also influence the microbiota; thus, they can have lasting adverse effects. Herbal drugs offer a generally safe treatment option for uncomplicated infections of the urinary or respiratory tract. Additionally, their microbiota preserving properties allow for a more appropriate therapy of uncomplicated infections, without contributing to an increase in antibiotic resistance or disturbing the gut microbiota. Here, herbal treatments may be a more appropriate therapy, with a generally favorable safety profile.

2.
Planta Med ; 87(8): 611-619, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33530113

ABSTRACT

BNO 1095, a standardized dry extract from the fruits of Vitex agnus-castus, represents an approved herbal medicinal product for the treatment of premenstrual syndrome. Angiogenesis, the formation of new blood vessels from pre-existing capillaries, plays a major role in physiological situations, such as wound healing or tissue growth in female reproductive organs, but it is also of great importance in pathophysiological conditions such as chronic inflammatory diseases or cancer. Angiogenesis is a highly regulated multi-step process consisting of distinct key events that can be influenced pharmacologically. Few studies suggested anti-angiogenic actions of V. agnus-castus fruit extracts in in vivo and ex vivo models. Here, we provide for the first time profound in vitro data on BNO 1095-derived anti-angiogenic effects focusing on distinct angiogenesis-related endothelial cell functions that are inevitable for the process of new blood vessel formation. We found that V. agnus-castus extract significantly attenuated undirected and chemotactic migration of primary human endothelial cells. Moreover, the extract efficiently inhibited endothelial cell proliferation and reduced the formation of tube-like structures on Matrigel. Of note, the treatment of endothelial cell spheroids almost blocked endothelial sprouting in a 3D collagen gel. Our data present new and detailed insights into the anti-angiogenic actions of BNO 1095 and, therefore, suggest a novel scope of potential therapeutic applications of the extract for which these anti-angiogenic properties are required.


Subject(s)
Drugs, Chinese Herbal , Vitex , Endothelial Cells , Fruit , Humans , Plant Extracts/pharmacology
3.
Phytomedicine ; 60: 152987, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31257118

ABSTRACT

BACKGROUND: Urinary tract infections are among the most common types of infections and give rise to inflammation with pain as one of the main symptoms. The herbal medicinal product Canephron® N contains BNO 2103, a defined mixture of pulverized rosemary leaves, centaury herb, and lovage root, and has been used in the treatment of urinary tract infections for more than 25 years. PURPOSE: To test the hypothesis that BNO 2103 reduces pain in cystitis and prostatitis by virtue of anti-inflammatory properties, and to reveal potential mechanisms underlying the anti-inflammatory features. STUDY DESIGN: BNO 2103 was studied for anti-inflammatory and analgesic properties in three animal models in vivo, and the mode of action underlying the anti-inflammatory features was investigated in human leukocytes and cell-free assays in vitro. METHODS: To assess the anti-inflammatory and analgesic efficacy of BNO 2103 we employed cyclophosphamide-induced cystitis and carrageenan-induced prostatitis in rats, and zymosan-induced peritonitis in mice. Human neutrophils and monocytes as well as isolated human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1-containing microsomes were utilized to assess inhibition of leukotriene and/or prostaglandin E2 production by HPLC and/or ELISA. RESULTS: When given orally, BNO 2103 reduced inflammation and hyperalgesia in experimental cystitis in rats, while individual components of BNO 2103 also reduced hyperalgesia. Furthermore, BNO 2103 reduced hyperalgesia in rats with carrageenan-induced prostatitis. Cell-based and cell-free studies implicate inhibition of prostaglandin E2 and leukotriene B4 biosynthesis as potential mechanisms underlying the analgesic and anti-inflammatory effects. CONCLUSION: Our data support the hypothesis that BNO 2103 reduces pain by virtue of its anti-inflammatory properties, possibly related to suppression of prostaglandin E2 and leukotriene B4 formation, and suggest that this combination has the potential to treat clinical symptoms such as inflammatory pain. Thus BNO 2103 may represent an alternative to reduce the use of antibiotics in urinary tract infections.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cystitis/complications , Pain/drug therapy , Plant Extracts/pharmacology , Prostatitis/complications , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Carrageenan/adverse effects , Cyclophosphamide/adverse effects , Cystitis/chemically induced , Drugs, Chinese Herbal , Female , Humans , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inflammation/drug therapy , Inflammation/etiology , Male , Mice , Monocytes/drug effects , Neutrophils/drug effects , Pain/etiology , Plant Extracts/chemistry , Prostatitis/chemically induced , Rats , Rats, Sprague-Dawley
4.
J Pharmacol Exp Ther ; 350(3): 520-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24951278

ABSTRACT

Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding.


Subject(s)
Calcium Channel Agonists/pharmacology , Large-Conductance Calcium-Activated Potassium Channels/agonists , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Urinary Bladder/drug effects , Animals , Calcium Channel Agonists/chemistry , Female , Guinea Pigs , HEK293 Cells , Humans , Large-Conductance Calcium-Activated Potassium Channels/physiology , Male , Muscle Contraction/physiology , Muscle Relaxation/physiology , Organ Culture Techniques , Urinary Bladder/physiology
5.
Am J Physiol Regul Integr Comp Physiol ; 299(3): R878-88, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20573989

ABSTRACT

Nerve-released ACh is the main stimulus for contraction of urinary bladder smooth muscle (UBSM). Here, the mechanisms by which ACh contracts UBSM are explored by determining Ca(2+) and electrical signals induced by nerve-released ACh. Photolysis of caged inositol 1,4,5-trisphosphate (IP(3)) evoked Ca(2+) release from the sarcoplasmic reticulum. Electrical field stimulation (20 Hz) induced Ca(2+) waves within the smooth muscle that were present only during stimulus application. Ca(2+) waves were blocked by inhibition of muscarinic ACh receptors (mAChRs) with atropine and depletion of sarcoplasmic reticulum Ca(2+) stores with cyclopiazonic acid (CPA), and therefore likely reflect activation of IP(3) receptors (IP(3)Rs). Electrical field stimulation also increased excitability to induce action potentials (APs) that were accompanied by Ca(2+) flashes, reflecting Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCCs) during the action potential. The evoked Ca(2+) flashes and APs occurred as a burst with a lag time of approximately 1.5 s after onset of stimulation. They were not inhibited by blocking IP(3)-mediated Ca(2+) waves, but by blockers of mAChRs (atropine) and VDCCs (diltiazem). Nerve-evoked contractions of UBSM strips were greatly reduced by blocking VDCCs, but not by preventing IP(3)-mediated Ca(2+) signaling with cyclopiazonic acid or inhibition of PLC with U73122. These results indicate that ACh released from nerve varicosities induces IP(3)-mediated Ca(2+) waves during stimulation; but contrary to expectations, these signals do not appear to participate in contraction. In addition, our data provide compelling evidence that UBSM contractions evoked by nerve-released ACh depend on increased excitability and the resultant Ca(2+) entry through VDCCs during APs.


Subject(s)
Acetylcholine/metabolism , Action Potentials/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Urinary Bladder/physiology , Animals , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Male , Mice , Mice, Inbred C57BL , Sarcoplasmic Reticulum , Urinary Bladder/innervation
6.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R378-84, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19923353

ABSTRACT

Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing the frequency of spontaneous action potentials.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/agonists , Muscle, Smooth/drug effects , Tetrazoles/pharmacology , Thiourea/analogs & derivatives , Urinary Bladder/drug effects , Action Potentials/drug effects , Animals , Electric Stimulation , Electrophysiology , Guinea Pigs , In Vitro Techniques , Male , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Patch-Clamp Techniques , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Thiourea/pharmacology , Urinary Bladder/cytology
7.
J Physiol ; 587(Pt 21): 5275-88, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19736301

ABSTRACT

Contraction of urinary bladder smooth muscle (UBSM) is caused by the release of ATP and ACh from parasympathetic nerves. Although both purinergic and muscarinic pathways are important to contraction, their relative contributions and signalling mechanisms are not well understood. Here, the contributions of each pathway to urinary bladder contraction and the underlying electrical and Ca(2+) signalling events were examined in UBSM strips from wild type mice and mice deficient in P2X1 receptors (P2X1(-/-)) before and after pharmacological inhibition of purinergic and muscarinic receptors. Electrical field stimulation was used to excite parasympathetic nerves to increase action potentials, Ca(2+) flash frequency, and force. Loss of P2X1 function not only eliminated action potentials and Ca(2+) flashes during stimulation, but it also led to a significant increase in Ca(2+) flashes following stimulation and a corresponding increase in the force transient. Block of muscarinic receptors did not affect action potentials or Ca(2+) flashes during stimulation, but prevented them following stimulation. These findings indicate that nerve excitation leads to rapid engagement of smooth muscle P2X1 receptors to increase action potentials (Ca(2+) flashes) during stimulation, and a delayed increase in excitability in response to muscarinic receptor activation. Together, purinergic and muscarinic stimulation shape the time course of force transients. Furthermore, this study reveals a novel inhibitory effect of P2X1 receptor activation on subsequent increases in muscarinic-driven excitability and force generation.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Muscle Contraction/physiology , Muscle, Smooth/innervation , Muscle, Smooth/physiology , Receptors, Purinergic P2/metabolism , Urinary Bladder/innervation , Urinary Bladder/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/physiology , Receptors, Purinergic P2X
8.
Am J Physiol Regul Integr Comp Physiol ; 290(4): R951-62, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16322346

ABSTRACT

Pituitary adenylate cyclase activating polypeptide (PACAP) peptides are expressed and regulated in sensory afferents of the micturition pathway. Although these studies have implicated PACAP in bladder control, the physiological significance of these observations has not been firmly established. To clarify these issues, the roles of PACAP and PACAP signaling in micturition and cystitis were examined in receptor characterization and physiological assays. PACAP receptors were identified in various tissues of the micturition pathway, including bladder detrusor smooth muscle and urothelium. Bladder smooth muscle expressed heterogeneously PAC(1)null, PAC(1)HOP1, and VPAC(2) receptors; the urothelium was more restricted in expressing preferentially the PAC(1) receptor subtype only. Immunocytochemical studies for PAC(1) receptors were consistent with these tissue distributions. Furthermore, the addition of 50-100 nM PACAP27 or PACAP38 to isolated bladder strips elicited transient contractions and sustained increases in the amplitude of spontaneous phasic contractions. Treatment of the bladder strips with tetrodotoxin (1 muM) did not alter the spontaneous phasic contractions suggesting direct PACAP effects on bladder smooth muscle. PACAP also increased the amplitude of nerve-evoked contractions. By contrast, vasoactive intestinal polypeptide had no direct effects on bladder smooth muscle. In a rat cyclophosphamide (CYP)-induced cystitis paradigm, intrathecal or intravesical administration of PAC(1) receptor antagonist, PACAP6-38, reduced cystitis-induced bladder overactivity. In summary, these studies support roles for PACAP in micturition and suggest that inflammation-induced plasticity in PACAP expression in peripheral and central micturition pathways contribute to bladder dysfunction with cystitis.


Subject(s)
Cystitis/chemically induced , Muscle, Smooth/metabolism , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Urinary Tract/metabolism , Animals , Cyclophosphamide/pharmacology , Dual Specificity Phosphatase 2 , Female , In Vitro Techniques , Models, Biological , Protein Phosphatase 2 , Protein Tyrosine Phosphatases/metabolism , Rats , Rats, Wistar , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Reflex , Syncope , Urinary Bladder/metabolism , Urothelium/metabolism
9.
Am J Physiol Regul Integr Comp Physiol ; 289(2): R402-R409, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15845880

ABSTRACT

When the urinary bladder is full, activation of parasympathetic nerves causes release of neurotransmitters that induce forceful contraction of the detrusor muscle, leading to urine voiding. The roles of ion channels that regulate contractility of urinary bladder smooth muscle (UBSM) in response to activation of parasympathetic nerves are not well known. The present study was designed to characterize the role of large (BK)- and small-conductance (SK) Ca(2+)-activated K(+) (K(Ca)) channels in regulating UBSM contractility in response to physiological levels of nerve stimulation in UBSM strips from mice. Nerve-evoked contractions were induced by electric field stimulation (0.5-50 Hz) in isolated strips of UBSM. BK and SK channel inhibition substantially increased the amplitude of nerve-evoked contractions up to 2.45 +/- 0.12- and 2.99 +/- 0.25-fold, respectively. When both SK and BK channels were inhibited, the combined response was additive. Inhibition of L-type voltage-dependent Ca(2+) channels (VDCCs) in UBSM inhibited nerve-evoked contractions by 92.3 +/- 2.0%. These results suggest that SK and BK channels are part of two distinct negative feedback pathways that limit UBSM contractility in response to nerve stimulation by modulating the activity of VDCCs. Dysfunctional regulation of UBSM contractility by alterations in BK/SK channel expression or function may underlie pathologies such as overactive bladder.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Parasympathetic Nervous System/physiology , Potassium Channels, Calcium-Activated/physiology , Urinary Bladder/physiology , Animals , Apamin/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Carbachol/pharmacology , Diltiazem/pharmacology , Drug Synergism , Electric Stimulation , Feedback, Physiological , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Male , Mice , Mice, Inbred C57BL , Peptides/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...