Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Pediatr Genet ; 10(3): 213-221, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34504725

ABSTRACT

Glutaric acidemia type 1 (GA-1, OMIM 231670) is an autosomal recessive inborn error of metabolism caused by the deficiency of glutaryl-coenzyme A (CoA) dehydrogenase with most children presenting in infancy with encephalopathy, dystonia, and macrocephaly. In this article, we presented the clinical characteristics, molecular profile, and outcomes in 29 unrelated families with affected children (30 cases total). The mean age at onset of illness was 10 months (±14.58), whereas the mean age at referral for molecular diagnosis was 29.44 months (±28.11). Patients were residents of nine different states of India. Clinical presentation varied from acute encephalitis followed by neuroregression and chronic/insidious developmental delay. Neurological sequelae varied from asymptomatic (no sequelae, 2 patients) to moderate (5 patients) and severe (23 patients) sequelae. All patients underwent blood tandem mass spectrometry (TMS on dried blood spots) and/or urine gas chromatography mass spectrometry (GCMS). Neuroimaging demonstrated batwing appearance in 95% cases. Sanger's sequencing of GCDH , covering all exons and exon-intron boundaries, was performed for all patients. Variants identified include 15 novel coding variants: p.Met100Thr, p.Gly107Ser, p.Leu179Val, p.Pro217Ser, p. Phe236Leufs*107, p.Ser255Pro, p.Met266Leufs*2, p.Gln330Ter, p.Thr344Ile, p.Leu345Pro, p.Lys377Arg, p.Leu424Pro, p.Asn373Lys, p.Lys377Arg, p.Asn392Metfs*9, and nine known genetic variants such as p.Arg128Gln, p.Leu179Arg, p.Trp225Ter, p.Met339Val, p.Gly354Ser, p.Arg402Gln, p.Arg402Trp, p.His403Tyr, and p.Ala433Val (Ensembl transcript ID: ENST00000222214). Using in silico analysis, genetic variants were shown to be affecting the residues responsible for homotetramer formation of the glutaryl-CoA dehydrogenase protein. Treatment included oral carnitine, riboflavin, protein-restricted diet, lysine-deficient special formulae, and management of acute crises with intravenous glucose and hydration. However, the mortality (9/30, 27.58%) and morbidity was high in our cohort with only two patients affording the diet. Our study is the largest multicentric, genetic variant-proven series of glutaric aciduria type 1 from India till date.

2.
BMC Med Genet ; 20(1): 193, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822280

ABSTRACT

BACKGROUND: The deficiency of vitamin D receptor (VDR) or its ligand, vitamin D3, is linked to the development of renal diseases. The TaqI (rs731236) and ApaI (rs7975232) polymorphisms of VDR gene are widely studied for their association with renal disease risk. However, studies have largely been ambiguous. METHODS: Meta-analysis was carried out to clarify the association of TaqI (2777 cases and 3522 controls) and ApaI (2440 cases and 3279 controls) polymorphisms with nephrolithiasis (NL), diabetic nephropathy (DN) and end stage renal disease (ESRD). RESULTS: The VDR TaqI C-allele under allele contrast was significantly associated with ESRD in both fixed effect and random effect models, and ApaI C-allele with ESRD only under fixed effect model. Cochrane Q-test showed no evidence of heterogeneity for TaqI polymorphism and a significant heterogeneity for Apa I polymorphism. No publication bias was observed for both the polymorphisms. CONCLUSIONS: The present meta-analysis identifies TaqI and ApaI polymorphisms of VDR gene as risk factors for renal diseases.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/metabolism , Diabetic Nephropathies/genetics , Kidney Failure, Chronic/genetics , Nephrolithiasis/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Case-Control Studies , Humans , Receptors, Calcitriol/metabolism
3.
Mol Syndromol ; 10(3): 161-166, 2019 May.
Article in English | MEDLINE | ID: mdl-31191205

ABSTRACT

Chromosome 1q42.12q42.2 deletions are documented as "disease causing" and show overlapping phenotypes depending on the genes involved in the deletion. In this report, we detected a 5.8-Mb deletion encompassing the chromosome 1q42.12q42.2 region in a 4-year-old boy with hypoplastic corpus callosum, epilepsy, developmental delay, microcephaly, cataract, cleft palate, and skeletal changes. The deletion was de novo. Genotype-phenotype correlations suggest that the major features of 1q42.12q42.2 microdeletion were attributed to the genes with a high probability of loss-of-function intolerance score in this deletion, namely LBR, ENAH, ACBD3, LIN9, ITPKB, CDC42BPA, ARF1, TAF5L, GALNT2, SPRTN, and EGLN1 along with GNPAT.

4.
Toxicol Mech Methods ; 29(3): 211-218, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30480468

ABSTRACT

Incense smoke is reported to increase cardiovascular disease (CVD) risk in exposed individuals. However, the mechanism underlying the toxic effect of incense smoke on cardiovascular system is unclear. To test this, we chronically exposed male albino rats to two different types of Arabian incense smoke and studied their effects on oxidative stress, inflammation, and endothelial function. Rats exposed to either of incense smoke showed a significant increase in malondialdehyde (MDA) and a significant decline in superoxide dismutase (SOD) and reduced glutathione (GSH). Endothelial functional marker, nitric oxide (NO) was significantly decreased while endothelin-1 was significantly increased in rats exposed to both the incense types. Incense smoke exposure also led to a significant increase in chemokines and inflammatory mediators including monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage-colony stimulating factor (GM-CSF), regulated on activation normal T cell expressed and secreted (RANTES), interleukin-4 (IL-4), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). Besides, incense smoke-exposed rats demonstrated a significant increase in the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecules-1 (VCAM-1), and E-selectin. Importantly, cessation of incense smoke exposure for 30 days led to a significant reversal in the levels of all the studied markers. Collectively, this study describes oxidative stress, endothelial dysfunction, and inflammation as possible underlying mechanisms in the toxic effects of incense smoke on increased CVD risk in exposed individuals. Findings also underscore that avoiding incense smoke exposure may have beneficial health effects.


Subject(s)
Aorta, Abdominal/drug effects , Cytokines/blood , Endothelium, Vascular/drug effects , Inhalation Exposure/adverse effects , Oxidative Stress/drug effects , Smoke/adverse effects , Animals , Aorta, Abdominal/immunology , Aorta, Abdominal/metabolism , Biomarkers/blood , Cell Adhesion Molecules/genetics , Endothelin-1/metabolism , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Male , Nitric Oxide/metabolism , Oxidative Stress/immunology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...