Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36548995

ABSTRACT

Objective:Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment.Results:Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 103S cm-1, flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with averagein vivoimpedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses.Significance:The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.


Subject(s)
Electrocorticography , Graphite , Mice , Animals , Electrocorticography/methods , Electrodes, Implanted , Brain/physiology , Brain Mapping/methods
2.
Adv Healthc Mater ; 11(18): e2200626, 2022 09.
Article in English | MEDLINE | ID: mdl-35869830

ABSTRACT

Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca2+ ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca2+ imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm2 of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca2+ signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca2+ signals that depend on the behavioral state.


Subject(s)
Calcium , Polymers , Animals , Electrodes, Implanted , Electrophysiological Phenomena , Mice , Mice, Transgenic , Skull
3.
Nat Methods ; 18(4): 417-425, 2021 04.
Article in English | MEDLINE | ID: mdl-33820987

ABSTRACT

The advent of genetically encoded calcium indicators, along with surgical preparations such as thinned skulls or refractive-index-matched skulls, has enabled mesoscale cortical activity imaging in head-fixed mice. However, neural activity during unrestrained behavior substantially differs from neural activity in head-fixed animals. For whole-cortex imaging in freely behaving mice, we present the 'mini-mScope', a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the mini-mScope can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.


Subject(s)
Cerebral Cortex/anatomy & histology , Microscopy, Fluorescence/instrumentation , Miniaturization , Animals , Mice
4.
Nat Protoc ; 15(6): 1992-2023, 2020 06.
Article in English | MEDLINE | ID: mdl-32405052

ABSTRACT

Cranial microsurgery is an essential procedure for accessing the brain through the skull that can be used to introduce neural probes that measure and manipulate neural activity. Neuroscientists have typically used tools such as high-speed drills adapted from dentistry to perform these procedures. As the number of technologies available for neuroscientists has increased, the corresponding cranial microsurgery procedures to deploy them have become more complex. Using a robotic tool that automatically performs these procedures could standardize cranial microsurgeries across neuroscience laboratories and democratize the more challenging procedures. We have recently engineered a robotic surgery platform that utilizes principles of computer numerical control (CNC) machining to perform a wide variety of automated cranial procedures. Here, we describe how to adapt, configure and use an inexpensive desktop CNC mill equipped with a custom-built surface profiler for performing CNC-guided microsurgery on mice. Detailed instructions are provided to utilize this 'Craniobot' for performing circular craniotomies for coverslip implantation, large craniotomies for implanting transparent polymer skulls for cortex-wide imaging access and skull thinning for intact skull imaging. The Craniobot can be set up in <2 weeks using parts that cost <$1,500, and we anticipate that the Craniobot could be easily adapted for use in other small animals.


Subject(s)
Craniotomy/instrumentation , Microsurgery/instrumentation , Robotic Surgical Procedures/instrumentation , Skull/surgery , Animals , Craniotomy/methods , Equipment Design , Female , Male , Mice , Mice, Inbred C57BL , Microsurgery/methods , Robotic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...