Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
EFSA J ; 16(1): e05102, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625661

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Tecia solanivora (Lepidoptera: Gelechiidae) the Guatemalan potato tuber moth, for the EU. T. solanivora is a well-defined species which feeds exclusively on Solanum tuberosum. It was first described from Costa Rica in 1973 and has spread through Central America and into northern South America via trade of seed potatoes. It has also spread to Mexico and the Canary Islands and most recently to mainland Spain where it is under official control in Galicia and Asturias. Potatoes in the field and storage can be attacked. Some authors regard T. solanivora as the most important insect pest of potatoes globally. T. solanivora is currently regulated by Council Directive 2000/29/EC, listed in Annex II/AI as Scrobipalpopsis solanivora. Larvae feed and develop within potato tubers; infested tubers therefore provide a pathway for pest introduction and spread, as does the soil accompanying potato tubers if it is infested with eggs or pupae. As evidenced by the ongoing outbreaks in Spain, the EU has suitable conditions for the development and potential establishment of T. solanivora. The pest could spread within the EU via movement of infested tubers; adults can fly and disperse locally. Larval feeding destroys tubers in the field and in storage. In the warmer southern EU, where the development would be fastest, yield losses would be expected in potatoes. Measures are available to inhibit entry via traded commodities (e.g. prohibition on the introduction of S. tuberosum). T. solanivora satisfies all of the criteria assessed by EFSA to satisfy the definition of a Union quarantine pest. It does not satisfy EU regulated non-quarantine pest (RNQP) status because it is under official control. There are uncertainties over the effectiveness of preventing illegal imports via passenger baggage and the magnitude of potential impacts in the cool EU climate.

2.
EFSA J ; 16(1): e05107, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625663

ABSTRACT

The Panel on Plant health performed a pest categorisation of the Australian Eucalyptus snout-beetle Gonipterus scutellatus (Coleoptera: Curculionidae), for the EU. G. scutellatus should be referred as the G. scutellatus species complex because it includes several cryptic species. A complete nomenclature of the species present in the EU is still pending. It is a quarantine pest listed in Annex IIB of Council Directive 2000/29/EC. Protected zones are in place in Greece and Portugal (Azores). In the EU, it has been found in Italy, France, Spain and Portugal. It only consumes Eucalyptus species leaves. The main pathways of spread are the trade of Eucalyptus timber, hitchhiking in various commodities, trade of apple fruit as well as of plants for planting or plant parts. Spread by flight is also possible. The climate of the EU protected zones is similar to that of the Member States (MS) where the G. scutellatus complex is established, and the pest's main host plants are present. The damaged trees suffer die-back and the development of epicormics shoots. Severe attacks may provoke massive amounts of tree death. Biological control by using the egg parasitoid wasp Anaphes nitens is the most effective control measure. Some species within the G. scutellatus complex are not yet present in the EU (including G. scutellatus sensu stricto) and might therefore be considered as potential union quarantine pests for the EU territory. At least two species within the G. scutellatus complex (most likely G. platensis and Gonipterus species no. 2) meet the criteria assessed by EFSA for consideration as potential protected zone quarantine pests for the territory of the protected zones: Greece and Portugal (Azores). The criteria for considering the G. scutellatus complex as a potential regulated non-quarantine pest for the EU are not met since plants for planting are not the main pathway.

3.
EFSA J ; 16(1): e05109, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625664

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation for Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc), the causal agents of the bacterial blight and the bacterial leaf streak of rice, respectively. These pathovars are widely distributed in Asia, Africa and Australia. Xoo is also reported in some states of the USA and in some other countries of America. The identity of both pathovars is well established and efficient identification methods are available. The major host is cultivated rice (Oryza sativa), but different Oryza spp. as well as Poaceae weeds are reported as alternative hosts, with some uncertainty concerning the actual host range. Both pathovars are seed associated, despite the fact that seed transmission is still controversial for Xoo. Both pathovars are already regulated in Directives 2000/29/EC, on harmful organisms for plants, and 66/402/EEC, on the marketing of cereal seeds. The main pathway for entry is seed. Should these pathovars enter into EU, they may establish and spread, and they may have an impact on the rice crops, with uncertainties. The knowledge gaps identified are (1) the quantity of EU importation of rice seeds, (2) the risk of introduction through unprocessed rice for consumption, (3) the suitability of the EU growing climate conditions for the bacteria to establish and spread, (4) role of seed transmission (Xoo), (5) the role of weeds in the epidemiology and especially in seed transmission and dispersal, (6) host range of weeds. As none of the pathovars is known to occur in the EU, they do not meet one of the criteria for being considered as Union regulated non-quarantine pests. Nevertheless, both pathovars meet the criteria assessed by EFSA for consideration as Union quarantine pest.

4.
EFSA J ; 16(1): e05114, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625665

ABSTRACT

The Plant Health Panel reviewed the paper by Guarnaccia et al. (2017) and compared their findings with previous predictions on the establishment of Phyllosticta citricarpa. Four species of Phyllosticta were found by Guarnaccia et al. (2017) in Europe. P. citricarpa and P. capitalensis are well-defined species, with P. citricarpa recorded for the first time in Europe, confirming predictions by Magarey et al. (2015) and EFSA (2008, 2014, 2016) that P. citricarpa can establish in some European citrus-growing regions. Two new species P. paracitricarpa and P. paracapitalensis were also described, with P. paracitricarpa (found only in Greece) shown to be pathogenic on sweet orange fruits. Genotyping of the P. citricarpa isolates suggests at least two independent introductions, with the population in Portugal being different from that present in Malta and Italy. P. citricarpa and P. paracitricarpa were isolated only from leaf litter in backyards. However, since P. citricarpa does not infect or colonise dead leaves, the pathogen must have infected the above living leaves in citrus trees nearby. Guarnaccia et al. (2017) considered introduction to be a consequence of P. citricarpa having long been present or of illegal movement of planting material. In the Panel's view, the fruit pathway would be an equally or more likely origin. The authors did not report how surveys for citrus black spot (CBS) disease were carried out, therefore their claim that there was no CBS disease even where the pathogen was present is not supported by the results presented. From previous simulations, the locations where Guarnaccia et al. (2017) found P. citricarpa or P. paracitricarpa were conducive for P. citricarpa establishment, with number of simulated infection events by pycnidiospores comparable to sites of CBS occurrence outside Europe. Preliminary surveys by National Plant Protection Organisations (NPPOs) have not confirmed so far the findings by Guarnaccia et al. (2017) but monitoring is still ongoing.

5.
EFSA J ; 16(2): e05184, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32625817

ABSTRACT

Following a request from the European Commission, the EFSA Plant Health (PLH) Panel performed a pest categorisation of Anisogramma anomala, a well-defined and distinguishable fungal species of the family Valsaceae. The pathogen is regulated in Annex IIAI of Council Directive 2000/29/EC as a harmful organism whose introduction into the EU is banned on plants of Corylus L., intended for planting, other than seeds, originating in Canada and the USA. The fungus is native to eastern North America and causes eastern filbert blight on cultivated hazel, Corylus avellana, as well as on wild hazel (Corylus spp.). In the 1960s, the disease spread on infected plant material to Oregon, where it then threatened US hazelnut production in the Willamette Valley. The pest could enter the EU via plants for planting. Hosts and favourable climatic conditions are common in the EU, thus facilitating establishment. The pest would be able to spread following establishment through infected plants for planting and ascospore dispersal. A. anomala leads to canopy and yield loss and can cause death of Corylus trees. Should the pathogen be introduced into the EU, impacts can be expected not just on hazel as a crop and as an ornamental but also in coppices and woodlands, where Corylus species provide an important habitat. In Oregon, scouting for cankers, therapeutic pruning and copious fungicide applications are reported to be necessary (but costly measures) to continue hazelnut production in the presence of the disease. Breeding for resistance led to the selection of resistant cultivars. The main knowledge gaps concern (i) the role of deadwood and cut branches as potential entry pathways and means of spread and (ii) the susceptibility of C. avellana cultivars and of Corylus spp. in the wild in the EU. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

6.
EFSA J ; 16(2): e05185, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32625818

ABSTRACT

Following a request from the European Commission, the EFSA Plant Health (PLH) Panel performed a pest categorisation of Bretziella fagacearum, a well-defined and distinguishable fungal species of the family Ceratocystidaceae. The species was moved from the genus Ceratocystis to a new genus Bretziella following phylogenetic analysis of the species and its close relatives. The former species name Ceratocystis fagacearum is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IAI as a harmful organism whose introduction into the EU is banned. B. fagacearum is only reported from the USA, where it causes a wilt disease on Quercus spp. Other hosts are reported based on inoculation trials, although Chinese chestnut (Castanea mollissima) is reported to be naturally infected. No North American oak species has been found to be immune to the disease. The European oak species Quercus robur, Quercus petraea and Quercus pubescens were found to be susceptible in inoculation experiments. The pest could enter the EU via wood (with and without bark, including wood packaging material), plants for planting and cut branches. Hosts and favourable climatic conditions are common in the EU, thus facilitating establishment. The pest would be able to spread following establishment by means of root grafts, insect vectors and movement of wood, plants for planting and other means. The pest introduction would have impacts in woodland and plantations, as oak wilt disease is often lethal in a short period of time. Wood treatment (debarking, kiln drying, fumigation), prompt removal of affected trees and creating root-free zones between affected and healthy stands are available control measures. The main knowledge gaps concern (i) the survival of the fungus in wood during transport and the association with propagation material, (ii) the presence of suitable vectors in Europe and (iii) the relative susceptibility of the oak species native to Europe under natural conditions. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

7.
EFSA J ; 16(2): e05186, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32625819

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the gall midge Aschistonyx eppoi Inouye (1964) (Diptera, Cecidomyiidae), for the EU. A. eppoi is a well-defined and distinguishable species, native to Japan and Korea, and recognised as a pest of Juniperus chinensis, although our knowledge is solely based on one unique publication. A. eppoi is absent from the EU, and is listed in Annex IIAI of Directive 2000/29/EC. Its host plants, Juniperus spp. are also listed in Annex III of Directive 2000/29/EC. Plants for planting and branches are considered as pathways for this pest. A. eppoi has been intercepted twice (1974; 1975) in the EU and has been eradicated. The pest is likely to affect bonsai plants of J. chinensis if it were to establish in the EU territory. However, as it is unknown whether A. eppoi would attack the Juniperus spp. that occur in the EU, its potential impact on the wild vegetation is also unknown. As the pest originates from areas with warm climates, impact outdoors would affect the southern parts of the EU. Cultural control (destruction of infested material) and chemical control are the major control methods. All criteria assessed by EFSA for consideration as a potential quarantine pest are met, although there are high uncertainties regarding impact. The species is presently absent from the EU, and thus the criteria for consideration as a potential regulated non-quarantine pest are not met.

8.
EFSA J ; 16(3): e05183, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32625825

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the soil-borne fungus Fusarium oxysporum f. sp. albedinis, the causal agent of Fusarium wilt of date palm, for the EU. The identity of the pest is well established and reliable methods exist for its detection/identification. The pest is listed in Annex IIAI of Directive 2000/29/EC and is not known to occur in the EU. Fusarium oxysporum f. sp. albedinis is present in Morocco, Algeria and Mauritania. Its major host is Phoenix dactylifera, which is the only Phoenix species known to be affected by the pest. Uncertainty exists about the host status of Lawsonia inermis, Medicago sativa and Trifolium spp. cultivated as intercrops in the infested areas and reported as being symptomless carriers of the pest. The pest could potentially enter the EU on host plants and soil/growing media originating in infested Third countries. The current pest distribution and climate matching suggest that the pest could establish and spread in the EU wherever the host is present. In the infested areas, the pest causes vascular wilt resulting in yield/quality losses and plant death. It is expected that pest introduction and spread in the EU could impact date production. The pest is expected to have high environmental consequences in the Elche area (Spain), which is a UNESCO World Heritage Site, as well as other EU areas where P. dactylifera is grown as an amenity tree. Current EU phytosanitary measures are not fully effective at mitigating the risk of introduction and spread of the pest in the EU. Fusarium oxysporum f. sp. albedinis meets all the criteria assessed by EFSA for consideration as potential Union quarantine pest. As the pest is not known to occur in the EU, this criterion to consider it as Union regulated non-quarantine pest is not met.

9.
EFSA J ; 16(4): e05244, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625876

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the fungus Apiosporina morbosa, the causal agent of black knot, for the EU. The identity of the pest is well established and reliable methods exist for its detection/identification. The pest is listed in Annex IIAI of Directive 2000/29/EC and is not known to occur in the EU. Apiosporina morbosa is present in Alaska, Canada, Mexico and the continental states of the USA. The major hosts of A. morbosa are Prunus domestica and Prunus cerasus; the host status of other Prunus species and hybrids is uncertain because of contradictory reports or lack of information. The pest could potentially enter the EU on host plants for planting and plant parts originating in infested third countries. Wood of Prunus spp. is also a pathway of entry, but of minor importance. The current pest distribution and climate matching suggest that the pest could establish and spread in the EU wherever the hosts are grown. In the infested areas, the pest causes girdling of twigs and occasionally of larger branches, whereas trees with multiple infections loose vigour, bloom poorly, and become unproductive, stunted and susceptible to winter injury and infection by other pathogens. The presence of black knots makes trees unsuitable for timber production. It is expected that the pest introduction and spread in the EU would impact host production. Uncertainty exists on whether the agricultural practices and chemical control methods applied in the EU could prevent the establishment and spread of A. morbosa. A. morbosa meets all the criteria assessed by EFSA for consideration as potential Union quarantine pest. As the pest is not known to occur in the EU, this criterion to consider it as Union regulated non-quarantine pest is not met.

10.
EFSA J ; 16(4): e05246, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625878

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health (PLH) performed a pest categorisation of Mycodiella laricis-leptolepidis, a well-defined and distinguishable fungal species of the family Mycosphaerellaceae. The former species name Mycosphaerella laricis-leptolepis is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IAI as a harmful organism whose introduction into the EU is banned. M. laricis-leptolepidis is native to East Asia and causes a disease known as needle cast of Japanese larch (Larix kaempferi = Larix leptolepis) and Kurile larch (Larix gmelinii). European larch (Larix decidua) was found to be susceptible to the disease as introduced tree in Japan. The fungus could enter the EU via plants for planting and cut branches of Larix spp. It could establish in the EU, as hosts are present and climatic conditions are favourable. The pathogen would be able to spread following establishment by human movement of infected plants for planting and by dissemination of ascospores. Should the pathogen be introduced in the EU, impacts can be expected due to needle loss in larch forests and plantations, thus leading to reduced tree growth and ecosystem service provision. The use of resistant/tolerant varieties can reduce the impacts. The key uncertainties are the knowledge gaps concerning (i) the potential range of spread through ascospores and (ii) the level of impacts in the native range of the pathogen. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

11.
EFSA J ; 16(4): e05248, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625880

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation of 'Blight and blight-like' for the EU territory. Blight is a major disease of citrus. Similar 'blight-like' diseases are also known (e.g. declinio, declinamiento) and are addressed simultaneously with Blight in the present categorisation. The causal agent(s) remain(s) unknown and the potential role of a recently identified citrus endogenous pararetrovirus (Citrus Blight-associated pararetrovirus, CBaPRV) remains to be established. Transmissibility and ability to produce consistent (although poorly specific) symptoms have been demonstrated and a combination of indirect approaches is used, with limits, for diagnosis. There are large uncertainties on the biology of the causal agent(s) and on the epidemiology of the disease, including the transmission mechanism(s) responsible for the observed field spread. Blight has been reported from North, Central and South America, Africa and Oceania but is not known to occur in the EU. It is listed in Annex IIA of Directive 2000/29EC. It has the potential to enter, establish and spread in the EU territory. The main entry pathway (citrus plants for planting) is closed by existing legislation and entry is only possible on minor pathways (such as illegal import). Blight is a severe disease and a negative impact is expected should it be introduced in the EU, but the magnitude of this negative impact is very difficult to estimate. 'Blight and blight like' satisfies all criteria evaluated by EFSA to qualify as a Union quarantine pest. It does not meet the criterion of being present in the EU to qualify as a Union regulated non-quarantine pest (RNQP). Since the identity of the causal agent(s) of the Blight and blight-like disease(s) and the existence and efficiency of natural spread mechanism(s) remain unknown, large uncertainties affect all aspects of the present pest categorisation.

12.
EFSA J ; 16(4): e05249, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625881

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Nacobbus aberrans (Nematoda: Pratylenchidae), the false root-knot nematode, for the EU. The nematode was originally described from the American continent. Due to differences in host range as well as molecular variability among populations, N. aberrans should be regarded as a species complex (N. aberrans sensu lato). All populations belonging to this species complex are pests of important host plants in the EU. N. aberrans had been detected indoors in the EU in the 1950s and 1960s but is no longer reported to be present in the EU. It is regulated by Council Directive 2000/29/EC, listed in Annex IAI as N. aberrans (Thorne) Thorne and Allen. Species within the N. aberrans complex are endoparasitic with migratory and sedentary stages. They are highly polyphagous attacking many plant species. They are also found in soil where they can survive dry conditions and freezing temperatures. Plants for planting and soil are potential pathways for this nematode. Climatic conditions in the EU are similar to those found in the countries where the pest is present. Hosts of the nematode from which high-yield losses have been reported include potato, sugar beet, tomato and beans. The nematode only moves short distances (around 1m) but may be spread with plants and soil moving activities. Measures are available to inhibit EU entry via potatoes and soil as such but not all host plants are covered by current legislation. Entry of the nematode with plants and soil attached to plants for planting that are not regulated is therefore possible. N. aberrans does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a Union quarantine pest.

13.
EFSA J ; 16(5): e05299, 2018 May.
Article in English | MEDLINE | ID: mdl-32625922

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of the seed-borne bacterium Curtobacterium flaccumfaciens pv. flaccumfaciens. The pest is regulated in Council Directive 2000/29/EC (Annex IIB) as a harmful organism whose introduction into, and spread within, the protected zones (PZ) of Greece, Portugal and Spain shall be banned if present on seeds of Phaseolus vulgaris and of Dolichos. The bacterium is widely distributed outside the EU and causes a systemic vascular disease (bacterial wilt of bean) as well as bacterial tan spot disease on soybean. The pest was sporadically recorded in several EU Member States in the past, but is currently not known to occur in the EU. The identity of the bacterium is well established and identification methods are available. The major host is common bean (Phaseolus vulgaris), but other crops and weeds are, or may be, hosts or play a role as reservoirs, with uncertainties. Seed transmission remains uncertain for minor and alternative host species. The main pathway for entry is seed. The role of other pathways (e.g. irrigation water and infected residues) is uncertain. Should the bacterium enter the EU (including the PZ), it may establish, spread and have an impact on its host crops. The use of healthy seeds is the most effective control measure. Curtobacterium flaccumfaciens pv. flaccumfaciens fits all the criteria assessed by EFSA to be regarded as a Union quarantine pest.

14.
EFSA J ; 16(6): e05297, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625936

ABSTRACT

The Panel on Plant Health performed a pest categorisation of nematodes belonging to the genus Hirschmanniella (Nematoda: Pratylenchidae). Twenty-nine species in this genus have been considered of which five species are present in the EU (Hirschmanniella behningi, Hirschmanniella gracilis, Hirschmanniella halophila, Hirschmanniella loofi and Hirschmanniella zostericola). The whole genus except H. gracilis is regulated by Council Directive 2000/29/EC (Annex IAI). Hirschmanniella species are root endoparasites uniquely adapted to aquatic environments. Most species are reported from tropical regions. Monocotyledons including aquatic plants are main hosts and some Hirschmanniella species are important pests of rice. Plants for planting are potential pathways for entry. Hirschmanniella species are frequently intercepted on imported aquarium plants. Measures are available to avoid entry. Environmental conditions in greenhouses and potentially in rice production areas of the EU are suitable for establishment. The nematode may be spread with irrigation, tools or plants for planting. Hirschmanniella species were categorised into four groups. The first group includes species reported as pests of crop plants; those satisfy all the criteria that are within the remit of EFSA to assess to be regarded as Union quarantine pests. The second group includes species that are not reported to cause economic damage to crop plants; those species do not satisfy all the criteria to be regarded as Union quarantine pests. Uncertainty exists whether species in this group can cause damage once introduced into the EU. The third group includes species that are known to be present in the EU and do not cause damage; they do not satisfy the criteria to be regarded as Union quarantine pests or regulated non-quarantine pests. The fourth group consists of H. gracilis only. This worldwide occurring species is present in the EU where it does not cause economic damage. It does not satisfy all the criteria to be regarded as a Union quarantine pest.

15.
EFSA J ; 16(6): e05300, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625937

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the non-EU Pissodes spp. (Coleoptera: Curculionidae). They constitute a well-defined taxon, with non-EU species distributed in the USA, Canada, Mexico, Guatemala, El Salvador, China, Japan, Korea, Russia and South Africa, some of which are recognised as severe pests of conifers, mainly Pinus spp. and Picea spp., or vector pathogens. The immature stages either live in the phloem and cambium of healthy, weakened or dead trees, or in the terminal shoots of living trees. They are listed as quarantine pests in Annex IAI of Directive 2000/29/EC. Plants for planting, branches of conifers and non-squared wood are considered as pathways. The pest can also disperse by hitchhiking, and fly over kilometres. The adults are long-lived (up to 4 years). They feed by puncturing the bark of stems or shoots. Females lay eggs in chewed-out cavities in the bark. The life cycle varies with species and local climatic conditions. At the end of the larval stage, the larva excavates a pupal cell between the sapwood and the bark, in the sapwood or in terminal shoots. Pissodes spp. overwinter as adults in the litter or as larvae or teneral adults in the galleries or pupal cells. The current geographic range of the non-European Pissodes spp. suggests that many of them may establish in the EU territory, where their hosts are widely present. We list some species which, if introduced to the EU, would most probably have an economic impact on plantations or may interfere with forest ecosystem processes although they are mainly abundant and damaging in intensively managed monocultures. All criteria for considering those non-EU Pissodes spp. as potential quarantine pests are met. The criteria for considering them as non-regulated quarantine pests are not met because they are absent from the EU territory.

16.
EFSA J ; 16(6): e05301, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625938

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the Siberian moth, Dendrolimus sibiricus Tschetverikov (Lepidoptera: Lasiocampidae). D. sibiricus is a well-defined and distinguishable species, native to Asian Russia and northern regions of Kazakhstan, Mongolia, China and North Korea, and recognised as a severe pest of Pinaceae conifers, mainly larch (Larix spp.), fir (Abies spp.), spruce (Picea spp.), five-needle pines (Pinus spp.). It has also a potential to develop on non-native Pinaceae: Cedrus, Pseudotsuga, Tsuga. It defoliates healthy trees and kills thousands of hectares of forests. It is absent from the EU and is listed as a quarantine pest in Annex IAI of Directive 2000/29/EC. Plants for planting, branches of conifers and non-squared wood from its distribution range are considered as pathways for the pest, which can also disperse by flight over tens of kilometres. The females produce sex pheromones. Adults do not feed and can survive for about 2 weeks. One female lays up to 400 eggs, attaching them to needles. One generation usually develops in 2-3 years, with larvae passing winter diapause and some undergoing facultative summer diapause. Exceptionally, 1-year generations may occur if the number of degree-days above 10°C is higher than 2,200. Larvae feed on needles through 5-6 instars and pupate in a cocoon on tree branches. Mature larvae have urticating setae on thoracic segments that protect them from enemies and may cause allergic reactions in humans and animals. The contradictory studies regarding the climatic requirements of D. sibiricus make the issue of its establishment in most of the EU territory uncertain, although its host trees are widely present. All criteria for considering D. sibiricus as a potential quarantine pest are met. The species is presently absent from the EU, and thus, the criteria for consideration as a potential regulated non-quarantine pest are not met.

17.
EFSA J ; 16(6): e05302, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625939

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Coniferiporia sulphurascens and Coniferiporia weirii, two well-defined and distinguishable fungal species of the family Hymenochaetaceae. The pathogens are regulated in Council Directive 2000/29/EC (Annex IAI, under the previous name Inonotus weirii for both species) as a harmful organism whose introduction into the EU is banned. The two pathogens are native to North America, where C. sulphurascens causes laminated root rot primarily in Douglas fir (Pseudotsuga menziesii) and grand fir (Abies grandis), while C. weirii causes cedar laminated root and butt rot mainly in cedars (Thuja plicata and Cupressus nootkatensis). C. weirii has been reported from Japan and China, and C. sulphurascens from China, Russia and Turkey. Neither species has been reported from the EU. C. sulphurascens may infect all conifers, while C. weirii is reported to mainly cause disease in tree species of Thuja spp. and Cupressus spp. The two pathogens could enter the EU mainly via wood with bark, isolated bark and plants for planting (including artificially dwarfed plants) of Pinaceae and Cupressaceae. Both fungi could establish in the EU, as hosts are present and climatic conditions are favourable. The two pathogens would be able to spread following establishment by the pathways mentioned for entry and also by dissemination of basidiospores and root contact with infected root/wood. Should the pathogen be introduced in the EU, impacts can be expected on coniferous woodlands, plantations and ornamental trees, thus leading to reduced tree growth and ecosystem service provision. The key uncertainties concern (i) the distribution of the two pathogens in Asia, (ii) the level of susceptibility of conifers native to Europe and (iii) the role of plants for planting as a pathway of entry and spread. For both pathogens, the criteria assessed by the Panel for consideration as a potential quarantine pest are met. As the two pests are not present in the EU, not all the criteria for consideration as regulated non-quarantine pests are met.

18.
EFSA J ; 16(6): e05303, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625940

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Guignardia laricina, a well-defined and distinguishable fungal species of the family Phyllostictaceae. The pathogen is regulated in Council Directive 2000/29/EC (Annex IAI) as a harmful organism whose introduction into the EU is banned. G. laricina is native to East Asia and causes a shoot blight disease of Larix spp. Major hosts of G. laricina are European larch (Larix decidua) and two North American larch species (Larix laricina (tamarack) and Larix occidentalis (Western larch)). Larix kaempferi (Japanese larch) is reported as susceptible. The only other host in nature is Douglas fir (Pseudotsuga menziesii), which is reported as an incidental host, but various other conifers have been reported as susceptible following artificial inoculation, including Picea abies. The fungus is not known to occur in the EU but could enter via plants for planting (including artificially dwarfed plants) and cut branches of Larix spp. It could establish in the EU, as hosts are present and climatic conditions are favourable. The pathogen would be able to spread following establishment by natural dissemination of ascospores and pycnospores and by human movement of infected plants for planting. Should the pathogen be introduced in the EU, impacts can be expected in larch forests, plantations and nurseries, leading to reduced tree growth and ecosystem service provision. The key uncertainties concern the current distribution and level of impacts in the native range of the pathogen. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. As the pest is not present in the EU, not all criteria for consideration as a regulated non-quarantine pest are met.

19.
EFSA J ; 16(6): e05304, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625941

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Grapholita packardi Zeller, (Lepidoptera: Tortricidae), for the EU. G. packardi is a well-defined and distinguishable species. It is widely distributed in the USA and has a restricted distribution in Canada and Mexico. It is recognised as a pest of blueberry and cherry, and has occasionally been reported in apple, pear and plum. It is cited on quince and wild rosaceous plants such as Crataegus. Larvae feed on blueberry and cherry fruits internally and overwinter in pruned twigs. External evidence of infestation of cherries by young larvae is occasionally not detectable. In apple, fruit damage is less common; rather, the pest bores into terminal shoots of nursery stock and young orchard trees. Feeding damage spoils fruit quality and marketability and reduces crop yield. G. packardi is not known to occur in the EU and is listed in Annex IIAI of Council Directive 2000/29/EC under the synonym Enarmonia packardi. Host plants for planting and infested fruit could potentially provide a pathway into the EU. Considering the climatic similarities between North America and Europe, and that wild and commercial hosts occur widely within the EU, G. packardi has the potential to establish within the EU. There would be one to three generations per year, as in North America. Based on literature, blueberries and cherries are likely to be impacted more than apples and pears. Phytosanitary measures are available to reduce the likelihood of introduction of G. packardi. All criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. As G. packardi is not known to occur in the EU, this criterion assessed by EFSA to consider it as a Union regulated non-quarantine pest is not met.

20.
EFSA J ; 16(6): e05305, 2018 Jun.
Article in English | MEDLINE | ID: mdl-32625942

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Colletotrichum gossypii, the fungal agent of anthracnose and ramulosis diseases of cotton, for the EU. The identity of the pest is well established and reliable methods exist for its detection/identification. The pest is present in most of the cotton-growing areas worldwide, including Bulgaria and Romania in the EU. Colletotrichum gossypii is listed as Glomerella gossypii in Annex IIB of Directive 2000/29/EC and is not known to occur in Greece, which is a protected zone (PZ). The only hosts are Gossypium species, with G. hirsutum and G. barbadense being the most susceptible. The pest could potentially enter the PZ on cotton seeds originating in infested third countries or EU infested areas. Entry into PZ by natural means from EU infested areas is possible, although there is uncertainty on the maximum distance the pest can travel by wind or insects. Bolls and unginned cotton are minor pathways of entry. Pest distribution and climate matching suggest that the pest could establish and spread in cotton-producing areas of northern Greece. In the infested areas, the pest causes damping-off, leaf/boll spotting, boll rot, witches' broom symptoms and stunting resulting in yield and quality losses. It affects also the lint and seeds reducing fibres quality and seed germinability. It is expected that its introduction and spread in the EU PZ would impact cotton yield and quality. The agricultural practices and control methods currently applied in Greece would not prevent pest establishment and spread. Colletotrichum gossypii meets all the criteria assessed by EFSA for consideration as potential quarantine pest for the EU PZ of Greece. The criteria for considering C. gossypii as a potential Union regulated non-quarantine pest are also met since cotton seeds are the main means of spread.

SELECTION OF CITATIONS
SEARCH DETAIL
...