Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 865743, 2022.
Article in English | MEDLINE | ID: mdl-35782865

ABSTRACT

Williams-Beuren syndrome (WBS) is a genetic disorder associated with the hemizygous deletion of several genes in chromosome 7, encoding 26 proteins. Malfunction of these proteins induce multisystemic failure in an organism. While biological functions of most proteins are more or less established, the one of methyltransferase WBSCR27 remains elusive. To find the substrate of methylation catalyzed by WBSCR27 we constructed mouse cell lines with a Wbscr27 gene knockout and studied the obtained cells using several molecular biology and mass spectrometry techniques. We attempted to pinpoint the methylation target among the RNAs and proteins, but in all cases neither a direct substrate has been identified nor the protein partners have been detected. To reveal the nature of the putative methylation substrate we determined the solution structure and studied the conformational dynamic properties of WBSCR27 in apo state and in complex with S-adenosyl-L-homocysteine (SAH). The protein core was found to form a canonical Rossman fold common for Class I methyltransferases. N-terminus of the protein and the ß6-ß7 loop were disordered in apo-form, but binding of SAH induced the transition of these fragments to a well-formed substrate binding site. Analyzing the structure of this binding site allows us to suggest potential substrates of WBSCR27 methylation to be probed in further research.

2.
Proc Natl Acad Sci U S A ; 116(11): 4940-4945, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30796188

ABSTRACT

Genes coding for small peptides have been frequently misannotated as long noncoding RNA (lncRNA) genes. Here we have demonstrated that one such transcript is translated into a 56-amino-acid-long peptide conserved in chordates, corroborating the work published while this manuscript was under review. The Mtln peptide could be detected in mitochondria of mouse cell lines and tissues. In line with its mitochondrial localization, lack of the Mtln decreases the activity of mitochondrial respiratory chain complex I. Unlike the integral components and assembly factors of NADH:ubiquinone oxidoreductase, Mtln does not alter its enzymatic activity directly. Interaction of Mtln with NADH-dependent cytochrome b5 reductase stimulates complex I functioning most likely by providing a favorable lipid composition of the membrane. Study of Mtln illuminates the importance of small peptides, whose genes might frequently be misannotated as lncRNAs, for the control of vitally important cellular processes.


Subject(s)
Lipid Metabolism , Mitochondria/metabolism , Peptides/metabolism , RNA, Long Noncoding/metabolism , Amino Acid Sequence , Animals , Cell Respiration , Cytosol/metabolism , Electron Transport Complex I/metabolism , Mice , NAD/metabolism , NIH 3T3 Cells , Oxygen Consumption , Phospholipids/metabolism , RNA, Long Noncoding/genetics , Triglycerides/metabolism
3.
J Proteome Res ; 17(1): 1-11, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29188713

ABSTRACT

Peptides encoded by short open reading frames (sORFs) are usually defined as peptides ≤100 aa long. Usually sORFs were ignored by automatic genome annotation programs due to the high probability of false discovery. However, improved computational tools along with a high-throughput RIBO-seq approach identified a myriad of translated sORFs. Their importance becomes evident as we are gaining experimental validation of their diverse cellular functions. This Review examines various computational and experimental approaches of sORFs identification as well as provides the summary of our current knowledge of their functional roles in cells.


Subject(s)
Open Reading Frames/genetics , Peptides/genetics , Data Mining/methods , Open Reading Frames/physiology , Peptides/physiology
4.
J Mol Biol ; 428(10 Pt B): 2134-45, 2016 05 22.
Article in English | MEDLINE | ID: mdl-26707202

ABSTRACT

N6-methyladenosine (m(6)A) is ubiquitously present in the RNA of living organisms from Escherichia coli to humans. Methyltransferases that catalyze adenosine methylation are drastically different in specificity from modification of single residues in bacterial ribosomal or transfer RNA to modification of thousands of residues spread among eukaryotic mRNA. Interactions that are formed by m(6)A residues range from RNA-RNA tertiary contacts to RNA-protein recognition. Consequences of the modification loss might vary from nearly negligible to complete reprogramming of regulatory pathways and lethality. In this review, we summarized current knowledge on enzymes that introduce m(6)A modification, ways to detect m(6)A presence in RNA and the functional role of this modification everywhere it is present, from bacteria to humans.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Escherichia coli/metabolism , RNA/metabolism , Humans , Methylation , Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...