Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133292, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914392

ABSTRACT

Complex coacervates of whey protein isolate (WPI) and two polysaccharides (almond gum (AG) and high methoxyl pectin (HMP)) under the different pHs (2.5-6.0) and biopolymer mass ratios (1:1-6:1) were prepared to achieve the maximum coacervate yield (CY). The optimum pH and mixing ratio to obtain the maximum CY of WPI-AG (75.93 %) and WPI-HMP (53.0 %) coacervates were 4.3 and 2:1, and 3.5 and 3:1, respectively. Although higher serum layers in emulsions stabilized by WPI-AG/HMP coacervates were detected at the 90 °C, remarkable heat stability under processing temperatures was obtained in ex-situ emulsions with both complex coacervates. Significantly more cold-storage and ionic stabilities were observed for emulsions formulated with WPI-AG than WPI-HMP. Peak shifts in FTIR spectra in the WPI-AG coacervate compared to the individual WPI and AG biopolymers revealed strong electrostatic interactions between these biopolymers. The absence of crystalline peaks for AG and HMP in X-ray diffraction (XRD) spectra confirmed the complexation of AG and HMP with WPI. Thermogravimetric and microstructural analyses showed that porous, loose mesh-like WPI-AG coacervates had superior thermal stability and structural integrity compared to WPI-HMP coacervates and individual biopolymers, which evidenced a more gradual weight loss pattern. WPI-AG coacervates would be promising for efficient emulsion-based delivery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...