Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 493: 162-170, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28088568

ABSTRACT

Nanostructured tin oxide (SnO2) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO2) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO2 films are enabling to detect as low as 1ppm NO2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO2 gas molecules with SnO2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis.

2.
J Colloid Interface Sci ; 487: 458-464, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27814557

ABSTRACT

Nodule-type polyaniline (PAni) has been successfully electrosynthesized onto conducting substrate and envisaged in electrochemical supercapacitor (ES) application as a potential energy storage electrode. Various bands are confirmed from the X-ray photoelectron and Fourier transform infrared spectra. Each nodule is of ∼100-200nminlength and 20-80nmindiameter. The ∼45° surface water contact angle with water of PAni surface can be beneficial for accessing an entire electrode area with minimum interfacial resistance loss when is in contact with the aqueous electrolyte for ES application. The PAni nodule-type electrode when electrochemically characterized using cyclic-voltammetry and galvanostatic charge-discharge measurements has demonstrated a specific capacitance of ∼508Fg-1, a specific energy of 32.12Whkg-1, a specific power of 13.39kWkg-1 and a Coulombic efficiency of 100% in 1MH2SO4 electrolyte solution. An occurrence of 70% retention of initial capacity even after 5000 cycles is supporting for energy-storage application. Two separate redox reaction behaviors are confirmed in the discharge measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...