Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32742279

ABSTRACT

BACKGROUND: The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. METHODS: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. RESULTS: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. CONCLUSION: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.

2.
J. venom. anim. toxins incl. trop. dis ; 26: e20200013, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135156

ABSTRACT

The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.(AU)


Subject(s)
Animals , Trimeresurus , Disintegrins , Cytotoxicity, Immunologic , Neoplasms , Viper Venoms , Antineoplastic Agents
3.
J Nat Prod ; 82(4): 850-858, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30869890

ABSTRACT

Examination of the EtOH extract of the leaves of the Malayan Tabernaemontana corymbosa resulted in the isolation of four new (1-4) and two known bisindole alkaloids (5, 6) of the Aspidosperma- Aspidosperma type. The structures of these alkaloids were determined based on analysis of the spectroscopic data (NMR and HRESIMS). X-ray diffraction analyses of the related bisindole alkaloids conophylline (5) and conophyllinine (6) established the absolute configurations. Treatment of the bisindole alkaloid conophylline (5) with benzeneselenic anhydride gave, in addition to the known bisindole polyervinine (7) previously isolated from another Malayan Tabernaemontana, another bisindole product, 8, an isolable tautomer of 7. X-ray diffraction analyses yielded the absolute configurations of both bisindoles and in addition showed that polyervinine (7) exists primarily as the neutral dione structure. The bisindoles (1-8) and the related conophylline-type bisindoles (9-13) showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, A549, HT-29, and HCT 116 cells, with IC50 values for the active compounds in the 0.01-5 µM range.


Subject(s)
Aspidosperma/chemistry , Cell Proliferation/drug effects , Indole Alkaloids/pharmacology , Tabernaemontana/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Indole Alkaloids/chemistry , Molecular Structure , Spectrum Analysis/methods
4.
J Nat Prod ; 81(5): 1266-1277, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29746134

ABSTRACT

Examination of the EtOH extract of the Malayan Alstonia penangiana resulted in the isolation of 10 new alkaloids, comprising two ajmaline (1, 2), four macroline oxindole (3-6), and four macroline-akuammiline bisindole alkaloids (7-10). The structures of these alkaloids were determined based on analysis of the spectroscopic data and, in the case of the oxindole 6 and the bisindole alkaloid 7, also confirmed by X-ray diffraction analysis. The bisindole alkaloids 7 and 8 showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells with IC50 values in the 0.3-8.3 µM range.


Subject(s)
Ajmaline/chemistry , Alkaloids/chemistry , Alstonia/chemistry , Cytotoxins/chemistry , Oxindoles/chemistry , A549 Cells , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Crystallography, X-Ray/methods , Drug Screening Assays, Antitumor/methods , HCT116 Cells , HT29 Cells , Humans , KB Cells , MCF-7 Cells , PC-3 Cells , Vincristine/chemistry
5.
Chem Biol Interact ; 273: 37-47, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28578903

ABSTRACT

The active isolate of LF1 in Leptospermum javanicum was further looked into its capabilities in provoking an apoptotic reaction and suppressing the metastasis process in treated non-small lung cancer cells. LF1 underwent isolation and purification to yield a white powder which was identified as Betulinic acid (BA) via NMR, LCMS and IR spectroscopy. The isolate, BA, which produced an encouraging cytotoxic effect against non-small lung cancer cells (A549 and NCI-H1299) through the MTT assay, was further assessed with TUNEL, Sub-G1 population quantification, acridine orange/ethidium bromide staining as well as activated caspase-3 detection. The results pointed towards the induction of apoptosis as a result of increasing doses of BA, regardless of the p53 status in both cell lines. Treatment with BA also prevented an effective attachment of the invasive A549 cells onto a new culture surface in addition to diminishing the migratory potential of treated cells across a porous membrane. Further investigation through the ELISA detection and gelatin zymography showed an adverse effect to production of matrix metalloproteinase-2 (MMP-2) while the levels of matrix metalloproteinase-9 (MMP-9) were not negatively affected. The findings from this study validate the potential of L. javanicum as a potential anti-cancer treatment as stated in our previous study. The isolate, BA not only showed a capacity in inducing apoptotic cell death in non-small lung cancer cells, but managed to distort the ability of the cancer cells in effectively undergoing the metastasis process.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Leptospermum/chemistry , Lung Neoplasms/pathology , Neoplasm Metastasis/prevention & control , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Death/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lung Neoplasms/drug therapy , Molecular Structure , Pentacyclic Triterpenes , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification , Betulinic Acid
6.
PLoS One ; 10(8): e0135995, 2015.
Article in English | MEDLINE | ID: mdl-26287817

ABSTRACT

Leptospermum flavescens Sm. (Myrtaceae), locally known as 'Senna makki' is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 µg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Checkpoints/drug effects , Leptospermum/metabolism , Lung Neoplasms/drug therapy , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Plant Extracts/pharmacology
7.
BMC Complement Altern Med ; 15: 186, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26081250

ABSTRACT

BACKGROUND: Baeckea frutescens is a natural remedy recorded to be used in curing various health conditions. In Peninsular Malaysia, B. frutescens is found on the mountain tops, quartz ridge and sandy coasts. To our knowledge, there is only limited published literature on B. frutescens. METHODS: B. frutescens leaf crude methanol and its fractionated extracts (hexane, ethyl acetate and water) were prepared. Folin-Ciocalteau's method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by the scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, reducing power assay through the Prussian blue complex formation, the metal chelating assay as well as the ß-Carotene-linoleic acid system assay. The cytotoxic activity of the extracts were evaluated against two lung carcinoma cell lines with varying molecular characteristics using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay. Lastly the toxicity of the crude methanol extract was evaluated using the acute oral toxicity experiment. RESULTS: The methanolic extract with highest phenolic content showed the strongest ß-carotene bleaching inhibition, whilst the water extract exhibited the highest activity in metal chelating and reducing power assays. The hexane extract displayed a mild cytotoxic effect on both A549 and NCI-H1299 human lung carcinoma cell lines. No mortalities and no adverse effects were observed in the acute oral toxicity investigation at the highest dose of 5000 mg/kg. CONCLUSION: The findings in the present study suggest B. frutescens may be considered as a safe source of compounds with antioxidant and cytotoxic properties for therapeutic and functional food applications.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Antioxidants/pharmacology , Lung Neoplasms/drug therapy , Myrtaceae/chemistry , Phenols/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/analysis , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/analysis , Biphenyl Compounds/metabolism , Humans , Oxidation-Reduction , Phenols/analysis , Picrates/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , beta Carotene/metabolism
8.
BMC Complement Altern Med ; 12: 128, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22898370

ABSTRACT

BACKGROUND: The leaves of Leea indica (Vitaceae), commonly known as 'Huo Tong Shu' in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines. METHODS: In the present study, L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) were firstly prepared prior to phenolic content, antioxidant effect and cytotoxic activity assessment. Folin-Ciocalteau's method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by employing three different established testing systems, such as scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, reducing power assay and SOD (superoxide dismutase) activity assay. The cytotoxic activity of the extracts were evaluated against three colon cancer cell lines with varying molecular characteristics (HT-29, HCT-15 and HCT-116) by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. RESULTS: The total phenolic content and antioxidant capabilities differed significantly among the L. indica leaf extracts. A strong correlation between total phenolic content and antioxidant properties was found, indicating that phenolic compounds are the major contributor to the antioxidant properties of these extracts. Among the crude ethanol and its fractionated extracts, fractionated water extract showed significantly the highest total phenolic content and strongest antioxidant effect in all the antioxidant testing systems employed in this study. All the four extracts exert no damage to the selected colon cancer cells. CONCLUSIONS: The data obtained in these testing systems clearly establish the antioxidant potency of the fractionated water extract of L. indica leaves. Additional studies should be carried out to isolate and identify the bioactive compounds in the fractionated water extract, in order to provide more convincing evidence.


Subject(s)
Antioxidants/pharmacology , Colonic Neoplasms , Phenols/pharmacology , Plant Extracts/pharmacology , Vitaceae/chemistry , Antioxidants/analysis , Biphenyl Compounds/metabolism , Colonic Neoplasms/drug therapy , HT29 Cells , Humans , Oxidation-Reduction , Phenols/analysis , Picrates/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...