Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 443(Pt B): 130257, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36345063

ABSTRACT

Molybdenum (Mo) is a naturally-occurring trace element in drinking water. Most commonly, molybdate anions (MoO42-) are in well water and breast milk. In addition, it is used in medical image testing. Recently, the EPA classified Mo as a potential contaminant, as exposure can lead to health effects such as gout, hyperuricemia, and even lung cancer. We have assessed the sorptive removal of aqueous molybdate using Douglas fir biochar (DFBC) and a hybrid DFBC/Fe3O4 composite containing chemically-coprecipitated iron oxide (Fe3O4). Adsorption was studied at various: pH values, equilibrium times (5 min-24 h), initial Mo concentrations (2.5-1000 mg/L), and temperatures (5, 25, and 40 °C) using batch sorption and fixed-bed column equilibrium methods. Langmuir capacities for DFBC and DFBC/Fe3O4 (at pH 3, 2 hrs equilibrium) were within 459.3-487.9 mg/g and 288-572 mg/g, respectively. These adsorbents and their Mo-laden counterparts were characterized by elemental analysis, BET, PZC, SEM, TEM, EDS, XRD, and XPS. MoO42- adsorption on DFBC is thought to be governed primarily via electrostatic attraction. Adsorption by DFBC/Fe3O4 is primarily governed by chemisorption onto magnetite surface hydroxyl groups, while electrostatics prevail in the DFBC-exposed phase. Stoichiometric precipitation of iron molybdates triggered by iron dissolution was also considered. The data suggest that DFBC and DFBC/Fe3O4 are promising candidates for molybdate sorption.


Subject(s)
Pseudotsuga , Water Pollutants, Chemical , Humans , Molybdenum , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Adsorption , Water/chemistry , Iron/chemistry , Kinetics
2.
Chemosphere ; 308(Pt 2): 136155, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36099986

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) can cause deleterious effects at low concentrations (70 ng/L). Their remediation is challenging. Aqueous µg/L levels of PFOS, PFOS, PFOSA, PFBS, GenX, PFHxS, PFPeA, PFHxA, and PFHpA (abbreviations defined in Table 1) multi-component adsorption (pH dependence, kinetics, isotherms, fixed-bed adsorption, regeneration, complex matrix) was studied on commercial Douglas fir biochar (BC) and its Fe3O4-containing BC. BC is a waste product when syn-gas is produced in a large scale from wet Douglas fir wood fed to gasification at 900-1000 °C and held for 1-20 s. This generates a relatively high surface area (∼700 m2/g) and large pore volume (∼0.25 cm3/g) biochar. Treatment of BC with FeCl3/FeSO4 and NaOH to chemically precipitate Fe3O4 onto BC. BC and its magnetic Fe3O4/BC analogue rapidly adsorbed (20-45 min equilibrium time) significant amounts of PFOS (∼14.6 mg/g) and PFOA (∼652 mg/g) at natural waters' pH range (6-8). Adsorption from µg/L concentrations has produced remediated aqueous PFAS concentrations of ∼50 ng/L or below the detection limits, which is closing in on EPA advisory limits. Column capacities of PFOS were 215.3 mg/g on BC and 51.9 mg/g Fe3O4/BC vs 53.0 mg/g and 21.8 mg/g, respectively, for PFOA. Hydrophobic and electrostatic interactions are thought to drive this sorption. Successful stripping regeneration by methanol was achieved. Thus, hydrophobic Douglas fir biochar produced by fast high temperature pyrolysis and its Fe3O4/BC analogue are adsorbent candidates for PFAS remediation from the dilute PFAS concentrations often found in polluted environments. Small Fe3O4/BC particles can be magnetically removed from batch treatments avoiding filtration.


Subject(s)
Fluorocarbons , Pseudotsuga , Water Pollutants, Chemical , Charcoal , Fluorocarbons/analysis , Methanol , Sodium Hydroxide , Waste Products , Water , Water Pollutants, Chemical/analysis
3.
J Colloid Interface Sci ; 614: 603-616, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35123214

ABSTRACT

This is the first report of the metal Fe-Ti oxide/biochar (Fe2TiO5/BC) composite for simultaneous removal of aqueous Pb2+, Cr6+, F- and methylene blue (MB). Primary Fe2TiO5 nano particles and aggregates were dispersed on a high surface area Douglas fir BC (∼700 m2/g) by a simple chemical co-precipitation method using FeCl3 and TiO(acac)2 salts treated by base and heated to 80 °C. This was followed by calcination at 500 °C. This method previously was used without BC to make the neat mixed oxide Fe2TiO5, exhibiting a lower energy band gap than TiO2. Adsorption of Cr(VI), Pb(II), fluoride, and MB on Fe2TiO5/BC was studied as a function of pH, equilibrium time, initial adsorbate concentration, and temperature. Adsorption isotherm studies were conducted at 5, 25, and 45 ℃ and kinetics for all four adsorbates followed the pseudo second order model. Maximum Langmuir adsorption capacities for Pb2+, Cr6+, F- and MB at their initial pH values were 141 (pH 2), 200 (pH 5), 36 (pH 6) and 229 (pH 6) mg/g at 45 ℃ and 114, 180, 26 and 210 mg/g at 25 ℃, respectively. MB was removed from the water on Fe2TiO5/BC by synergistic adsorption and photocatalytic degradation at pH 3 and 6 under UV (365 nm) light irradiation. Cr6+, Pb2+, F-, and MB each exhibited excellent removal capacities in the presence of eight different competitive ions in simulated water samples. The removal mechanisms on Fe2TiO5/BC and various competitive ion interactions were proposed. Some iron ion leaching at pH 3 catalyzed Photo-Fenton destruction of MB. Fe2TiO5, BC, and Fe2TiO5/BC bandgaps were studied to help understand photocatalysis of MB and to advance supported metal oxide photodegradation using smaller energy band gaps than the larger bandgap of TiO2 for water treatment. A long range goal is to photocatalytically destroy some sorbates with adsorbents to avoid the need for regeneration steps.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Charcoal , Chromium/analysis , Fluorides , Iron , Kinetics , Lead , Oxides , Titanium , Water Pollutants, Chemical/analysis
4.
J Colloid Interface Sci ; 597: 182-195, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33866210

ABSTRACT

Phosphate is a primary plant nutrient, serving integral role in environmental stability. Excessive phosphate in water causes eutrophication; hence, phosphate ions need to be harvested from soil nutrient levels and water and used efficiently. Fe-Mg (1:2) layered double hydroxides (LDH) were chemically co-precipitated and widely dispersed on a cheap, commercial Douglas fir biochar (695 m2/g surface area and 0.26 cm3/g pore volume) byproduct from syn gas production. This hybrid multiphase LDH dispersed on biochar (LDHBC) robustly adsorbed (~5h equilibrium) phosphate from aqueous solutions in exceptional sorption capacities and no pH dependence between pH 1-11. High phosphate Langmuir sorption capacities were found for both LDH (154 to 241 mg/g) and LDH-modified biochar (117 to 1589 mg/g). LDHBC was able to provide excellent sorption performance in the presence of nine competitive anion contaminants (CO32-, AsO43-, SeO42-, NO3-, Cr2O72-, Cl-, F-, SO42-, and MoO42-) and also upon remediating natural eutrophic water samples. Regeneration was demonstrated by stripping with aqueous 1 M NaOH. No dramatic performance drop was observed over 3 sorption-stripping cycles for low concentrations (5 ppm). The adsorbents and phosphate-laden adsorbents were characterized using Elemental analysis, BET, PZC, TGA, DSC, XRD, SEM, TEM, and XPS. The primary sorption mechanism is ion-exchange from low to moderate concentrations (10-500 ppm). Chemisorption and stoichiometric phosphate compound formation were also considered at higher phosphate concentrations (>500 ppm) and at 40 °C. This work advances the state of the art for environmentally friendly phosphate reclamation. These phosphate-laden adsorbents also have potential to be used as a slow-release phosphate fertilizer.


Subject(s)
Water Pollutants, Chemical , Adsorption , Charcoal , Hydroxides , Kinetics , Phosphates , Water , Water Pollutants, Chemical/analysis
5.
Small ; 17(34): e2007840, 2021 08.
Article in English | MEDLINE | ID: mdl-33899324

ABSTRACT

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Water Purification , Adsorption , Metals , Water Pollutants, Chemical/analysis
6.
J Colloid Interface Sci ; 587: 767-779, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33309243

ABSTRACT

Commercialization of novel adsorbents technology for providing safe drinking water must consider scale-up methodological approaches to bridge the gap between laboratory and industrial applications. These imply complex matrix analysis and large-scale experiment designs. Arsenic concentrations up to 200-fold higher (2000 µg/L) than the WHO safe drinking limit (10 µg/L) have been reported in Latin American drinking waters. In this work, biochar was developed from a single, readily available, and taxonomically identified woody bamboo species, Guadua chacoensis. Raw biochar (BC) from slow pyrolysis (700 °C for 1 h) and its analog containing chemically precipitated Fe3O4 nanoparticles (BC-Fe) were produced. BC-Fe performed well in fixed-bed column sorption. Predicted model capacities ranged from 8.2 to 7.5 mg/g and were not affected by pH 5-9 shift. The effect of competing matrix chemicals including sulfate, phosphate, nitrate, chloride, acetate, dichromate, carbonate, fluoride, selenate, and molybdate ions (each at 0.01 mM, 0.1 mM and 1 mM) was evaluated. Fe3O4 enhanced the adsorption of arsenate as well as phosphate, molybdate, dichromate and selenate. With the exception of nitrate, individually competing ions at low concentration (0.01 mM) did not significantly inhibit As(V) sorption onto BC-Fe. The presence of ten different ions in low concentrations (0.01 mM) did not exert much influence and BC-Fe's preference for arsenate, and removal remained above 90%. The batch and column BC and BC-Fe adsorption capacities and their ability to provide safe drinking water were evaluated using a naturally contaminated tap water (165 ± 5 µg/L As). A 960 mL volume (203.8 Bed Volumes) of As-free drinking water was collected from a 1 g BC-Fe fixed bed. Adsorbent regeneration was attempted with (NH4)2SO4, KOH, or K3PO4 (1 M) strippers. Potassium phosphate performed the best for BC-Fe regeneration. Safe disposal options for the exhausted adsorbents are proposed. Adsorbents and their As-laden analogues (from single and multi-component mixtures) were characterized using high resolution XPS and possible competitive interactions and adsorption pathways and attractive interactions were proposed including electrostatic attractions, hydrogen bonding and weak chemisorption to BC phenolics. Stoichiometric precipitation of metal (Mg, Ca and Fe) oxyanion (phosphate, molybdate, selenate and chromate) insoluble compounds is considered. The use of a packed BC-Fe cartridge to provide As-free drinking water is presented for potential commercial use. BC-Fe is an environmentally friendly and potentially cost-effective adsorbent to provide arsenic-free household water.


Subject(s)
Arsenic , Sasa , Water Pollutants, Chemical , Water Purification , Adsorption , Arsenic/analysis , Charcoal , Ferric Compounds , Iron , Kinetics , Technology Transfer , Water Pollutants, Chemical/analysis
7.
ACS Appl Mater Interfaces ; 12(8): 9248-9260, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31990524

ABSTRACT

Oil spills cause massive loss of aquatic life. Oil spill cleanup can be very expensive, have secondary environmental impacts, or be difficult to implement. This study employed five different adsorbents: (1) commercially available byproduct Douglas fir biochar (BC) (SA ∼ 695 m2/g, pore volume ∼ 0.26 cm3/g, and pore diameter ∼ 13-19.5 Å); (2) BC modified with lauric acid (LBC); (3) iron oxide-modified biochar (MBC); (4) LBC modified with iron oxide (LMBC); and (5) MBC modified with lauric acid (MLBC) for oil recovery. Transmission, engine, machine, and crude oils were used to simulate oil spills and perform adsorption experiments. All five adsorbents adsorbed large quantities of each oil in fresh and simulated seawater with only a slight pH dependence, fast kinetics (sorptive equilibrium reached before 15 min), and high regression fits to the pseudo-second-order kinetic model. The Sips isotherm model oil sorption capacities for these sorbents were in the range ∼3-11 g oil/1 g adsorbent. Lauric acid-decorated (60-2 wt %) biochars gave higher oil adsorption capacities than the undecorated biochar. Lauric acid enhances biochar hydrophobicity and its water contact angle and reduces water influx into biochar's porosity preventing it from sinking in water for 3 weeks. These features were observed even at 2% wt of lauric acid (sinks only after 2 weeks). Magnetization by magnetite nanoparticle deposition onto BC and LBC allows the recovery of the exhausted adsorbent by a magnetic field as an alternative to filtration. Oil sorption was endothermic. Recycling was demonstrated after toluene stripping. The oil-laden adsorbents' heating values were obtained, suggesting an alternative use of these spent adsorbents as a low-cost fuel after recovery, avoiding waste disposal costs. The initial and oil-laden adsorbents were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmet-Teller surface area, contact angle, thermogravimetric analyses, differential scanning calorimetry, vibrating sample magnetometry, elemental analysis, and X-ray photoelectron spectroscopy.

8.
Chemosphere ; 239: 124788, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31521935

ABSTRACT

Digestion of biomass derived carbonaceous materials such as biochar (BC) can be challenging due to their high chemical recalcitrance and vast variations in composition. Reports on the development of specific sample digestion methods for such materials remain inadequate and thus require considerable attention. Nine different carbonaceous materials; slow-pyrolyzed tea-waste and king coconut BC produced at 300 °C, 500 °C and 700 °C, sludge waste BC produced at 700 °C, wet fast-pyrolyzed Douglas-Fir BC and steam activated coconut shell BC have been tested to evaluate a relatively fast and convenient open-vessel digestion method using seven digestion reagents including nitric acid (NA), fuming nitric acid (FNA), sulfuric acid (SA), NA/SA, FNA/SA, NA/H2O2 and SA/H2O2 mixtures. From the tested digestion reagents, SA/H2O2 mixture dissolved low temperature produced BC (LTBC) within 2 h with occasional shaking and no external heating. Except peroxide mixtures, the other reagents were used to evaluate microwave digestion (MWD) efficiency. Nitric acid mixture was capable of only completely digesting LTBC in the MWD procedure whereas FNA, NA/SA and FNA/SA mixtures resulted in the successful dissolution of all tested carbonaceous materials. Amongst them, FNA provided the least matrix effect in the quantification of the four metals tested using flame atomic absorption spectrophotometry. Tested recoveries for FNA were satisfactory as well. It was concluded that FNA is a preferable reagent for microwave digestion of BC.


Subject(s)
Charcoal/chemistry , Waste Products , Cocos , Dairying , Hydrogen Peroxide , Metals/analysis , Microwaves , Nitric Acid/chemistry , Pyrolysis , Sewage , Spectrophotometry, Atomic/methods , Sulfuric Acids/chemistry
9.
Sci Total Environ ; 706: 135943, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31862592

ABSTRACT

Discarded bamboo culms of Guadua chacoensis were used for biochar remediation of aqueous As(V). Raw biochar (BC), activated biochar (BCA), raw Fe3O4 nanoparticle-covered biochar (BC-Fe), and activated biochar covered with Fe3O4 nanoparticles (BCA-Fe) were prepared, characterized and tested for As(V) aqueous adsorption. The goal is to develop an economic, viable, and sustainable adsorbent to provide safe arsenic-free water. Adsorbents were characterized using scanning electron microscopy (SEM) and energy dispersive analysis by X-ray (SEM-EDX), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (TEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller surface area measurements (SBET), point of zero charge determinations (PZC), and elemental analysis. Activation with KOH increased the O/C ratio and the surface area of BC from 6.7 m2/g to 1239.7 m2/g (BCA). As(V) sorption equilibrium was achieved within <2 h for all four adsorbents and kinetics followed the pseudo-second-order model. At a 10 mg/L initial As(V) concentration, BC-Fe achieved a 100% removal (5 mg/g) over a pH 5 to 9 window. Sorption was endothermic on all four adsorbents and the capacities rose with the increasing temperature. Langmuir capacities at 40 °C for BC, BCA, BC-Fe, and BCA-Fe were 256, 217, 457, and 868 mg/g, respectively, and capacities were compared with other sorbents. Breakthrough fixed-bed column sorption was carried out for BC and BC-Fe producing 6.6 mg/g and 13.9 mg/g bed capacities, respectively. Potassium phosphate was a better As stripping agent than sodium bicarbonate. Performance of the adsorbents in an As(V)-spiked natural water and a naturally As(V)-contaminated domestic water were assessed. Robust arsenate sequestration occurred generating As-safe water (As <0.01 mg/L), despite the presence of competing ions. Stoichiometric precipitation of iron-arsenate complexes triggered by iron dissolution was also established.


Subject(s)
Sasa , Water Purification , Adsorption , Arsenic , Charcoal , Ferric Compounds , Kinetics , Metal Nanoparticles , Water Pollutants, Chemical
10.
ACS Appl Mater Interfaces ; 11(50): 46714-46725, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31741369

ABSTRACT

A simple and novel method, self-assembly of nanocellulose and nanochitin, was developed to produce high-efficiency and versatile biohybrid hydrogel (BHH) and aerogel (BHA) for water purification. The self-assembly process was driven by the electrostatic force between one-dimensional (1D) negatively charged TEMPO-oxidized cellulose nanofiber (TOCNF) and positively charged partly deacetylated chitin nanofiber (PDChNF). The self-assembly process was performed at room temperature and without adding any cross-linking agents throughout the process. This results in the three-dimensional (3D) BHH that physically cross-linked via both electrostatic interactions and hydrogen bonding between TOCNF and PDChNF. The obtained BHA from lyophilized BHH exhibited a highly porous interconnected structure with a specific surface area of 54 m2·g-1, which assures the availability of its internal active site for the adsorption of toxic metalloid ions and organic pollutants. Consequently, the BHA displayed super-high adsorption capacities of 217 mg·g-1 for As(III) under the neutral pH conditions and 531 mg·g-1 for methylene blue (MB) under an alkaline aqueous condition with rapid adsorption kinetics, in sharp contrast to conventional biobased adsorbents. Moreover, the BHA is reusable, which still exhibited a high MB adsorption capacity of 505 mg·g-1 even after five successive adsorption-desorption cycles. This versatile BHA produced via a facile preparation strategy is proven to be a promising renewable adsorbent for water purification, offering simple and green alternatives to the conventional adsorbent from synthetic polymers.

11.
J Environ Manage ; 250: 109429, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31491719

ABSTRACT

Magnetic Fe3O4/Douglas fir biochar composites (MBC) were prepared with a 29.2% wt. Fe3O4 loading and used to treat As(III)-contaminated water. Toxicity of As(III) (inorganic) is significantly greater than As(V) and more difficult to remove from water. Removal efficiency was optimized verses pH, contact time and initial concentration. Column sorption and regeneration were also studied. Adsorption kinetics data best fitted the pseudo second order model (R2 > 0.99). Adsorption was analyzed with three isotherm models at 20, 25 and 40 °C. The Sips isotherm showed the best fit at 25 °C with a 5.49 mg/g adsorption capacity, which is comparable with other adsorbents. MBC gave faster kinetics (~1-1.5 h) at pH 7 and ambient temperature than previous adsorbents. The Gibbs free energy (ΔG) of this spontaneous As(III) adsorption was -35 kJ/mol and ΔH = 70 kJ/mol was endothermic. Experiments were performed on industrial and laboratory wastewater samples in the presence of other co-existing contaminants (pharmaceutical residues, heavy metals ions and oxi-anions). The composite reduced the arsenic concentrations below the WHO's safe limit of 0.2 mg/L for waste water discharge. X-ray photoelectron spectroscopy (XPS) studies found As(III) and less toxic As(V) on Fe3O4 surfaces indicating adsorbed (or adsorbing) As(III) oxidation occurred upon contact with O2 and possibly dissolved Fe(III) or upon drying under oxic conditions. Under anoxic conditions magnetite to maghemite transformation drives the oxidation. A pH-dependent surface chemisorption mechanism was proposed governing adsorption aided by XPS studies vs pH.


Subject(s)
Arsenic , Pseudotsuga , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Ferric Compounds , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Kinetics , Water
12.
RSC Adv ; 9(31): 17612-17622, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-35520596

ABSTRACT

Tea-waste is an abundant feedstock for producing biochar (BC) which is considered to be a cost effective carbonaceous adsorbent useful for water remediation and soil amendment purposes. In the present study, tea-waste BC (TWBC) produced at three different temperatures were subjected to nitric, sulfuric and hydrochloric acid modifications (abbreviated as NM, SM and HM respectively). Characteristics of the raw and modified BC such as ultimate and proximate analyses, surface morphology, surface acidity and functionality, point of zero charge, cation exchange capacity (CEC) and thermal stability were compared to evaluate the influence of pyrolysis temperature and of modifications incorporated. The amount of carboxylic and phenolic surface functionalities on TWBC was seen to decrease by 93.44% and 81.06% respectively when the pyrolysis temperature was increased from 300 to 700 °C. Additionally, the yield of BC was seen to decrease by 46% upon the latter temperature increment. The elemental analysis results provided justification for high-temperature BC being more hydrophobic as was observed by the 61% increase in H/C ratio which is an indication of augmented aromatization. The CEC was the highest for the low-temperature BC and was seen to further increase by NM which is attributed to the 81.89% increase in carboxylic functionalities. The surface area was seen to significantly increase for BC700 upon NM (∼27 times). The SM led to pore wall destruction which was observed in scanning electron microscopy images. Findings would enable the rational use of these particular modifications in relevant remediation and soil amendment applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...