Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hippocampus ; 22(6): 1392-404, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21956787

ABSTRACT

Persistent-firing neurons in the entorhinal cortex (EC) and the lateral nucleus of the amygdala (LA) continue to discharge long after the termination of the original, spike-initiating current. An emerging theory proposes that endogenous persistent firing helps support a transient memory system. This study demonstrated that persistent-firing neurons are also prevalent in rat perirhinal cortex (PR), which lies immediately adjacent to and is reciprocally connected with EC and LA. Several characteristics of persistent-firing neurons in PR were similar to those previously reported in LA and EC. Persistent firing in PR was enabled by the application of carbachol, a nonselective cholinergic agonist, and it was induced by injecting a suprathreshold current or by stimulating suprathreshold excitatory synaptic inputs to the neuron. Once induced, persistent firing lasted for seconds to minutes. Persistent firing could always be terminated by a sufficiently large and prolonged hyperpolarizing current; it was prevented by antagonists of muscarinic cholinergic receptors (mAChRs); and it was blocked by flufenamic acid. The latter has been suggested to inhibit a Ca(2+) -activated nonspecific cation conductance (G(CAN) ) that normally furnishes the sustained depolarization during persistent firing. In many PR neurons, the discharge rate during persistent firing was a graded function of depolarizing and/or hyperpolarizing inputs. Persistent firing was not prevented by blocking fast excitatory and inhibitory synaptic transmission, demonstrating that it can be generated endogenously. We suggest that persistent-firing neurons in PR, EC, LA, and certain other brain regions may cooperate in support of a transient-memory system.


Subject(s)
Action Potentials/physiology , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Pyramidal Cells/physiology , Receptors, Muscarinic/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...