Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32176281

ABSTRACT

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Subject(s)
Cellular Senescence/drug effects , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-pim-1/metabolism , Telomere Homeostasis/drug effects , Transforming Growth Factor beta1/pharmacology , A549 Cells , Animals , Humans , Male , Mice, Knockout , Myocytes, Cardiac/enzymology , Phosphorylation , Proto-Oncogene Proteins c-pim-1/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Telomerase/metabolism
2.
Cells ; 9(9)2020 08 31.
Article in English | MEDLINE | ID: mdl-32878131

ABSTRACT

Enhancing cardiomyocyte survival is crucial to blunt deterioration of myocardial structure and function following pathological damage. PIM1 (Proviral Insertion site in Murine leukemia virus (PIM) kinase 1) is a cardioprotective serine threonine kinase that promotes cardiomyocyte survival and antagonizes senescence through multiple concurrent molecular signaling cascades. In hematopoietic stem cells, PIM1 interacts with the receptor tyrosine kinase c-Kit upstream of the ERK (Extracellular signal-Regulated Kinase) and Akt signaling pathways involved in cell proliferation and survival. The relationship between PIM1 and c-Kit activity has not been explored in the myocardial context. This study delineates the interaction between PIM1 and c-Kit leading to enhanced protection of cardiomyocytes from stress. Elevated c-Kit expression is induced in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1. Co-immunoprecipitation and proximity ligation assay reveal protein-protein interaction between PIM1 and c-Kit. Following treatment with Stem Cell Factor, PIM1-overexpressing cardiomyocytes display elevated ERK activity consistent with c-Kit receptor activation. Functionally, elevated c-Kit expression confers enhanced protection against oxidative stress in vitro. This study identifies the mechanistic relationship between PIM1 and c-Kit in cardiomyocytes, demonstrating another facet of cardioprotection regulated by PIM1 kinase.


Subject(s)
Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Humans , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-pim-1/biosynthesis , Proto-Oncogene Proteins c-pim-1/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...