Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 229: 896-908, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36572076

ABSTRACT

X-chromosomes inactivation (XCI) is a phenomenon that aims to equalize the dosage of X-linked gene products between XY males and XX females in mammals. XIST gene is the master regulator of X chromosome inactivation during early embryonic developmental stages of Bos taurus. Biological molecule such as lncRNA plays significant role in the control of XCI, by RNA-based regulatory mechanisms and are non-coding regions of the genome. In our study, using in-silico transcriptome data analysis approach, we analysed RNA-seq data of E35, E39 and E43 samples from bovine genital ridges of early embryonic stages, and identified lncRNA transcripts. More than 7 lakh lncRNA transcripts were identified. Further, our study identified DE-lncRNAs and genes between male and female and studied their co-expression. More than four thousand differentially expressed lncRNAs identified. The co-expression and RT-PCR study in the result showed that there exists an association between the XIST and DE-lncRNAs in early embryonic gonads of bovine at E35. In this study, the association between DE-lncRNAs and XIST gene indicates, the potentially important role of DE-lncRNAs during embryo development in bovine. In conclusion, this study shows there exist an interplay between genes and lncRNAs at transcriptome level of bovine during early embryonic days.


Subject(s)
RNA, Long Noncoding , Animals , Cattle , Female , Male , Embryonic Development/genetics , Genome , Mammals/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome Inactivation/genetics
2.
Sex Dev ; 15(5-6): 381-391, 2021.
Article in English | MEDLINE | ID: mdl-34583366

ABSTRACT

During the process of sex determination, a germ-cell-containing undifferentiated gonad is converted into either a male or a female reproductive organ. Both the composition of sex chromosomes and the environment determine sex in vertebrates. It is assumed that transcription level regulation drives this cascade of mechanisms; however, transcription factors can alter gene expression beyond transcription initiation by controlling pre-mRNA splicing and thereby mRNA isoform production. Using the key time window in sex determination and gonad development in mice, it has been reported that new non-transcriptional events, such as alternative splicing, could play a key role in sex determination in mammals. We know the role of key regulatory factors, like WT1(+/-KTS) or FGFR2(b/c) in pre-mRNA splicing and sex determination, indicating that important steps in the vertebrate sex determination process probably operate at a post-transcriptional level. Here, we discuss the role of pre-mRNA splicing regulators in sex determination in vertebrates, focusing on the new RNA-seq data reported from mice fetal gonadal transcriptome.


Subject(s)
Alternative Splicing , Sex Determination Processes , Alternative Splicing/genetics , Animals , Female , Gonads/metabolism , Male , Mice , Sex Determination Processes/genetics , Sex Differentiation/genetics , Vertebrates/genetics
3.
Front Immunol ; 12: 622599, 2021.
Article in English | MEDLINE | ID: mdl-33659006

ABSTRACT

Background: Neonatal sepsis is a systemic condition widely affecting preterm infants and characterized by pro-inflammatory and anti-inflammatory responses. However, its pathophysiology is not yet fully understood. Epigenetics regulates the immune system, and its alteration leads to the impaired immune response underlying sepsis. DNA methylation may contribute to sepsis-induced immunosuppression which, if persistent, will cause long-term adverse effects in neonates. Objective: To analyze the methylome of preterm infants in order to determine whether there are DNA methylation marks that may shed light on the pathophysiology of neonatal sepsis. Design: Prospective observational cohort study performed in the neonatal intensive care unit (NICU) of a tertiary care center. Patients: Eligible infants were premature ≤32 weeks admitted to the NICU with clinical suspicion of sepsis. The methylome analysis was performed in DNA from blood using Infinium Human Methylation EPIC microarrays to uncover methylation marks. Results: Methylation differential analysis revealed an alteration of methylation levels in genomic regions involved in inflammatory pathways which participate in both the innate and the adaptive immune response. Moreover, differences between early and late onset sepsis as compared to normal controls were assessed. Conclusions: DNA methylation marks can serve as a biomarker for neonatal sepsis and even contribute to differentiating between early and late onset sepsis.


Subject(s)
Inflammation/genetics , Neonatal Sepsis/genetics , Adaptive Immunity/genetics , Cohort Studies , DNA Methylation , Diagnosis, Differential , Female , Genome , Humans , Immunity, Innate/genetics , Infant, Newborn , Infant, Premature , Male , Neonatal Sepsis/diagnosis , Pilot Projects , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...