Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 679106, 2021.
Article in English | MEDLINE | ID: mdl-34025678

ABSTRACT

The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.


Subject(s)
Gene Expression Regulation , NF-kappa B/metabolism , Signal Transduction , Carrier Proteins , Disease Susceptibility , Female , Host-Parasite Interactions/immunology , Host-Pathogen Interactions/immunology , Humans , Maternal-Fetal Exchange , Multigene Family , NF-kappa B/genetics , Pregnancy , Protein Binding
2.
Environ Mol Mutagen ; 59(8): 755-768, 2018 10.
Article in English | MEDLINE | ID: mdl-30260497

ABSTRACT

Hodgkin's lymphoma (HL) is a lymphoid malignancy representing 5% of all cancers in children, 16% in adolescents, and 30-40% of all malignant lymphomas and has a survival rate of ~95% at 10 years. One of the most common treatment schemes uses a cocktail of genotoxic agents including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) with or without radiotherapy. We investigated the occurrence of chromosomal damage in peripheral blood lymphocytes from five patients diagnosed with HL who provided samples before (BT), during chemotherapy (DT) and ~1 year after ABVD chemotherapy/radiotherapy (AT). Five healthy subjects served as controls. Chromosomal abnormalities were evaluated by multicolor fluorescence in situ hybridization. The average frequencies of structural chromosomal aberrations in HL samples were 0.11, 0.22, and 0.96 per cell in BT, DT, and AT samples, respectively. These frequencies were significantly different (P < 0.0001) with respect to control subjects (0.02 per cell). Interestingly, the highest frequency of structural damage, including genomic chaos and nonclonal abnormalities, was observed in the AT samples indicating that new aberrations were continuously produced. Rejoined structural chromosomal aberrations were the most common type of aberrations, although aneuploidies were also significantly increased. Finally, we found several chromosomal abnormalities linked to cancer secondary to treatment in all five HL patients. Our results show that ABVD chemotherapy plus radiotherapy is inducing genomic chaos in vivo; moreover, the persistence of genomic instability in the hematopoietic stem cells from HL patients may play a role in the occurrence of secondary cancer that is observed in 5-20% of HL patients. Environ. Mol. Mutagen. 59:755-768, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy/adverse effects , Chromosome Aberrations/chemically induced , DNA Damage/drug effects , Hodgkin Disease/therapy , Lymphocytes/cytology , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bleomycin/adverse effects , Bleomycin/therapeutic use , DNA Damage/genetics , Dacarbazine/adverse effects , Dacarbazine/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Female , Hodgkin Disease/genetics , Humans , Male , Tumor Cells, Cultured , Vinblastine/adverse effects , Vinblastine/therapeutic use , Young Adult
3.
Mol Cytogenet ; 7(1): 65, 2014.
Article in English | MEDLINE | ID: mdl-25276227

ABSTRACT

BACKGROUND: Trisomy 14 mosaicism is a rare chromosomal abnormality. It is associated with multiple congenital anomalies. We report a 15 year-old female with an unusual karyotype with three cell lines: 47,XX,+mar/47,XX,+14/46,XX. At six months old she had short stature, cleft palate, hyperpigmented linear spots in arms and legs and developmental delay. At present, she has mild facial dysmorphism and moderate mental retardation. METHODS: Cytogenetic analysis was performed in peripheral blood lymphocytes and in the light and dark skin following standard methods. DNAarray - Oligo 180 k was carried out using Agilent Technologies and FISH analysis was accomplished using DNA BACs probes to confirm the result obtained by DNAarray. Methylation-Specific PCR (MS-PCR) of the MEG3 promoter and microsatellite analysis were performed. RESULTS: Microarray analysis confirmed partial trisomy 14 mosaicism; the marker chromosome was found to be from chromosome 14, the result was confirmed with FISH. Methylation (14q32.3) and microsatellite (14q11-14q32.33) analysis were carried out and UPD was discarded. The global result was: mos 47,XX,+del(14)(q11.2)[45]/47,XX,+14[10]/46,XX[45]. CONCLUSIONS: This is a unique case because of the coexistence of two abnormal cell lines, including one with +14 and another with +del(14)(q11.2). To our knowledge, only three patients have been reported with trisomy 14 and another abnormal cell line. The array analysis identified the marker chromosome and characterized the breakpoint. The del(14)(q11.2) does not seem to be related to any particular phenotypic characteristic of the patient; the clinical features of our patient observed until now, can be attributed to trisomy 14 mosaicism. Nevertheless, we cannot discard the manifestation of new symptoms related to her karyotype in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...