Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 146: 112596, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35062066

ABSTRACT

OBJECTIVE: To determine whether miR-125b regulates cholesterol efflux in vivo and in vitro through the regulation of scavenger receptor type B1 (SR-B1). APPROACH AND RESULTS: We demonstrated that miR-125b is up-regulated in the human aortas of patients with CAD and is located in macrophages and vascular smooth muscle cells (VSMCs). We identified SCARB1 as a direct target of miR-125b by repressing the activity of the SCARB1 3'-untranslated region reporter construct. Moreover, the overexpression of miR-125b in both human and mouse macrophages as well as VSMCs was found to downregulated the expression of the SCARB1 and the SR-B1 protein levels, thereby impairing α-HDL-mediated macrophage cholesterol efflux in vitro. The in vivo reverse cholesterol transport (RCT) rate from non-cholesterol-loaded macrophages transfected with miR-125b to feces was also found to be decreased when compared with that of control mimic-transfected macrophages. CONCLUSIONS: Together, these results provide evidence that miR-125b downregulates SCARB1 and SR-B1 in both human and mouse macrophages as well as VSMCs, thereby impairing macrophage cholesterol efflux in vitro and the whole macrophage-specific RCT pathway in vivo.


Subject(s)
Cholesterol, HDL/genetics , MicroRNAs/metabolism , Receptors, Scavenger/metabolism , Animals , Biological Transport , Cholesterol, HDL/metabolism , Down-Regulation , Humans , Macrophages/metabolism , Mice
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769025

ABSTRACT

Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding "on-target" and "off-target" side effects. In this "ncRNA in therapeutics" issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.


Subject(s)
Nucleic Acids/genetics , RNA, Untranslated/genetics , Animals , Biomarkers/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Drug Delivery Systems/methods , Humans
3.
Biomedicines ; 9(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34829789

ABSTRACT

This paper concerns 3'-untranslated regions (3'UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3'UTR regions. Controlling 3'UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3'UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3'UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3'UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3'UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3'UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3'UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3'UTRs with differential functional features.

4.
Bio Protoc ; 11(10): e4032, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34150939

ABSTRACT

The co-stimulatory molecule CD40 and its ligand CD40L play a key role in the regulation of immunological processes and are involved in the pathophysiology of autoimmune and inflammatory diseases. Inhibition of the CD40-CD40L axis is a promising therapy, and a number of strategies and techniques have been designed to hinder its functionality. Our group has broad experience in silencing CD40 using RNAi technology, and here we summarize protocols for the systemic administration of a specific anti-CD40 siRNA in different rodents models, in addition to the subsequent quantification of CD40 expression in murine kidneys by immunostaining. The use of RNAi technology with specific siRNAs to silence genes is becoming an essential method to investigate gene functions and is rapidly emerging as a therapeutic tool. Graphic abstract: CD40 siRNA mechanism.

5.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353159

ABSTRACT

Cardiovascular mortality increases with decreasing renal function although the cause is yet unknown. Here, we have investigated whether low chronic inflammation in chronic kidney diseases (CKD) could contribute to increased risk for coronary artery diseases (CAD). Thus, a prospective case-control study was conducted in patients with CAD and CKD undergoing coronary artery bypass graft surgery with the aim of detecting differences in cardiovascular outcomes, epicardial adipose tissue volume, and inflammatory marker activity associated with renal dysfunction. Expression of membrane CD14 and CD16, inflammatory cytokines and chemokines, mitogen-activated protein (MAP) kinases and hsa-miR-30a-5p were analyzed in peripheral blood mononuclear cells (PBMCs). Epicardial fat volume and tissue inflammation in perivascular adipose tissue and in the aorta were also studied. In the present study, 151 patients were included, 110 with CAD (51 with CKD) and 41 nonCAD controls (15 with CKD). CKD increased the risk of cardiac surgery-associated acute kidney injury (CSA-AKI) as well as the 30-day mortality after cardiac surgery. Higher counts of CD14++CD16+ monocytes were associated with vascular inflammation, with an increased expression of IL1ß, and with CKD in CAD patients. Expression of hsa-miR-30a-5p was correlated with hypertension. We conclude that CKD patients show an increased risk of CSA-AKI and mortality after cardiovascular surgery, associated with the expansion of the CD14++CD16+ subset of proinflammatory monocytes and with IL1ß expression. We propose that inflammation associated with CKD may contribute to atherosclerosis (ATH) pathogenesis.


Subject(s)
Acute Kidney Injury/etiology , Cardiac Surgical Procedures/mortality , Cardiovascular Diseases/mortality , Inflammation/complications , Renal Insufficiency, Chronic/physiopathology , Acute Kidney Injury/pathology , Aged , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Case-Control Studies , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Survival Rate
6.
Int J Mol Sci ; 21(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178422

ABSTRACT

Our interest in the mechanisms of atherosclerosis progression (ATHp) has led to the recent identification of 13 miRNAs and 1285 mRNAs whose expression was altered during ATHp. Here, we deepen the functional relationship among these 13 miRNAs and genes associated to oxidative stress, a crucial step in the onset and progression of vascular disease. We first compiled a list of genes associated to the response to oxidative stress (Oxstress genes) by performing a reverse Gene Ontology analysis (rGO, from the GO terms to the genes) with the GO terms GO0006979, GO1902882, GO1902883 and GO1902884, which included a total of 417 unique Oxstress genes. Next, we identified 108 putative targets of the 13 miRNAs among these unique Oxstress genes, which were validated by an integrated miRNA/mRNA counter-expression analysis with the 1285 mRNAs that yielded 14 genes, Map2k1, Mapk1, Mapk9, Dapk1, Atp2a2, Gata4, Fos, Egfr, Foxo1, Ccr7, Vkorc1l1, Rnf7, Kcnh3, and Mgat3. GO enrichment analysis and a protein-protein-interaction network analysis (PPI) identified most of the validated Oxstress transcripts as components of signaling pathways, highlighting a role for MAP signaling in ATHp. Lastly, expression of these Oxstress transcripts was measured in PBMCs from patients suffering severe coronary artery disease, a serious consequence of ATHp. This allowed the identification of FOXO1 and CCR7 as blood markers downregulated in CAD. These results are discussed in the context of the interaction of the Oxstress transcripts with the ATHp-associated miRNAs.


Subject(s)
Biomarkers/metabolism , Coronary Artery Disease/genetics , Forkhead Box Protein O1/genetics , MicroRNAs/genetics , Oxidative Stress/genetics , RNA, Messenger/genetics , Receptors, CCR7/genetics , Animals , Down-Regulation/genetics , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks/genetics , Humans , Mice , Protein Interaction Maps/genetics , Signal Transduction/genetics , Transcriptome/genetics
7.
Clin Transl Med ; 9(1): 5, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32009226

ABSTRACT

Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.

8.
Kidney Dis (Basel) ; 5(1): 3-10, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30815458

ABSTRACT

BACKGROUND: Renal transplantation is the treatment of choice for chronic kidney disease (CKD) patients, but the shortage of kidneys and the disabling medical conditions these patients suffer from make dialysis essential for most of them. Since dialysis drastically affects the patients' lifestyle, there are great expectations for the development of wearable artificial kidneys, although their use is currently impeded by major concerns about safety. On the other hand, dialysis patients with hemodynamic instability do not usually tolerate intermittent dialysis therapy because of their inability to adapt to a changing scenario of unforeseen events. Thus, the development of novel wearable dialysis devices and the improvement of clinical tolerance will need contributions from new branches of engineering such as artificial intelligence (AI) and machine learning (ML) for the real-time analysis of equipment alarms, dialysis parameters, and patient-related data with a real-time feedback response. These technologies are endowed with abilities normally associated with human intelligence such as learning, problem solving, human speech understanding, or planning and decision-making. Examples of common applications of AI are visual perception (computer vision), speech recognition, and language translation. In this review, we discuss recent progresses in the area of dialysis and challenges for the use of AI in the development of artificial kidneys. SUMMARY AND KEY MESSAGES: Emerging technologies derived from AI, ML, electronics, and robotics will offer great opportunities for dialysis therapy, but much innovation is needed before we achieve a smart dialysis machine able to analyze and understand changes in patient homeostasis and to respond appropriately in real time. Great efforts are being made in the fields of tissue engineering and regenerative medicine to provide alternative cell-based approaches for the treatment of renal failure, including bioartificial renal systems and the implantation of bioengineered kidney constructs.

9.
J Inflamm (Lond) ; 16: 25, 2019.
Article in English | MEDLINE | ID: mdl-31889910

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is associated with endothelial dysfunctions thus prompting links between microcirculation (MC), inflammation and major cardiovascular risk factors. PURPOSE OF THE STUDY: We have previously reported that siRNA-silencing of CD40 (siCD40) reduced atherosclerosis (ATH) progression. Here, we have deepened on the effects of the siCD40 treatment by evaluating retrospectively, in stored kidneys from the siCD40 treated ApoE-/- mice, the renal microcirculation (measured as the density of peritubular capillaries), macrophage infiltration and NF-κB activation. METHODS: Kidneys were isolated after 16 weeks of treatment with the anti-CD40 siRNA (siCD40), with a scrambled control siRNA (siSC) or with PBS (Veh. group). Renal endothelium, infiltrating macrophages and activated NF-κB in endothelium were identified by immunohistochemistry, while the density of stained peritubular capillaries was quantified by image analysis. RESULTS: ATH was associated with a reduction in renal MC, an effect reversed by the anti-CD40 siRNA treatment (3.8 ± 2.7% in siCD40; vs. 1.8 ± 0.1% in siSC; or 1.9 ± 1.6% in Veh.; p < 0.0001). Furthermore, siCD40 treatment reduced the number of infiltrating macrophages compared to the SC group (14.1 ± 5.9 cells/field in siCD40; vs. 37.1 ± 17.8 cells/field in siSC; and 1.3 ± 1.7 cells/field in Veh.; p = 0.001). NF-κB activation also peaked in the siSC group, showing lower levels in the siCD40 and Veh. groups (63 ± 60 positive cells/section in siCD40; vs. 152 ± 44 positive cells/section in siSC; or 26 ± 29 positive cells/section in veh.; p = 0.014). Lastly, serum creatinine was also increased in the siCD40 (3.4 ± 3.3 mg/dL) and siSC (4.6 ± 3.0 mg/dL) groups when compared with Veh. (1.1 ± 0.9 mg/dL, p = 0.1). CONCLUSIONS: Anti-CD40 siRNA therapy significantly increased the density of peritubular capillaries and decreased renal inflammation in the ATH model. These data provide a physiological basis for the development of renal diseases in patients with ATH. Furthermore, our results also highligth renal off-target effects of the siRNA treatment which are discussed.

10.
Int J Mol Sci ; 19(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895733

ABSTRACT

Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.


Subject(s)
Alu Elements/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Nonlinear Dynamics , RNA, Untranslated/genetics , Animals , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics
11.
Data Brief ; 9: 1105-1112, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27924297

ABSTRACT

Data presented in this Data in Brief article correspond to the article "in vivo" silencing of CD40 reduces progression of experimental atherogenesis through a NFκB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis" (M. Hueso, L. De Ramon, E. Navarro, E. Ripoll, J.M. Cruzado, J.M. Grinyo, J. Torras, 2016) [1]. Here, we describe the validation of the silencing of CD40 expression with a specific siRNA in ApoE-/- mouse aortas, and its systemic effects on splenic lymphocytic subpopulations as well as on the infiltration of aortic intima by F4/80+, galectin-3+ macrophages or by NF-κB+ cells. We also show the output of a Gene Ontology and TLDA analysis which allowed the detection of potential mediators of atherosclerosis progression. We provide the scientific community with a set of genes whose expression is increased during atherosclerosis progression but downregulated upon CD40 silencing.

12.
Atherosclerosis ; 255: 80-89, 2016 12.
Article in English | MEDLINE | ID: mdl-27835742

ABSTRACT

BACKGROUND AND AIMS: CD40/CD40L signaling exerts a critical role in the development of atherosclerosis, and microRNAs (miRNAs) are key regulators in vascular inflammation and plaque formation. In this work, we investigated mRNA/miRNA expression during progression of atherosclerotic lesions through CD40 silencing. METHODS: We silenced CD40 with a specific siRNA in ApoE-/- mice and compared expression of mRNA/miRNA in ascending aorta with scrambled treated mice. RESULTS: siRNA-CD40 treated mice significantly reduced the extension and severity of atherosclerotic lesions, as well as the number of F4/80+, galectin-3+ macrophages and NF-κB+ cells in the intima. Genome-wide mRNA/miRNA profiling allowed the identification of transcripts, which were significantly upregulated during atherosclerosis; among them, miR-125b and miR-30a, Xpr1, a regulator of macrophage differentiation, Taf3, a core transcription factor and the NF-κB activator Ikkß, whereas, the NF-κB inhibitor Ikbα was downregulated during disease progression. All those changes were reversed upon CD40 silencing. Interestingly, TAF3, XPR1 and miR-125b were also overexpressed in human atherosclerotic plaques. Murine Taf3 and Xpr1 were detected in the perivascular adipose tissue (PVAT), and Taf3 also in intimal foam cells. Finally, expression of miR-125b was regulated by the CD40-NF-κB signaling axis in RAW264.7 macrophages. CONCLUSIONS: CD40 silencing with a specific siRNA ameliorates progression of experimental atherosclerosis in ApoE-/- mice, and evidences a role for NF-κB, Taf3, Xpr1, and miR-125b in the pathogenesis of atherosclerosis.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , CD40 Antigens/deficiency , MicroRNAs/metabolism , NF-kappa B/metabolism , RNA Interference , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , CD40 Antigens/genetics , Disease Models, Animal , Disease Progression , Female , Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Macrophages/metabolism , Mice , Mice, Knockout , MicroRNAs/genetics , NF-kappa B/genetics , Phenotype , Plaque, Atherosclerotic , RAW 264.7 Cells , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Signal Transduction , TATA-Binding Protein Associated Factors , Time Factors , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Transcriptome , Xenotropic and Polytropic Retrovirus Receptor
13.
Biochim Biophys Acta ; 1853(5): 1205-18, 2015 May.
Article in English | MEDLINE | ID: mdl-25704914

ABSTRACT

Hepatocellular carcinoma (HCC) cells with a mesenchymal phenotype show an asymmetric subcellular distribution of the chemokine receptor CXCR4, which is required for cell migration and invasion. In this work we examine the mechanisms that regulate the intracellular trafficking of CXCR4 in HCC cells. Results indicate that HCC cells present CXCR4 at the cell surface, but most of this protein is in endomembranes colocalizing with markers of the Golgi apparatus and recycling endosomes. The presence of high protein levels of CXCR4 present at the cell surface correlates with a mesenchymal-like phenotype and a high autocrine activation of the Transforming Growth Factor-beta (TGF-ß) pathway. CXCR4 traffics along the Golgi/exocyst/plasma membrane pathway and requires EXOC4 (Sec8) component of the exocyst complex. HCC cells use distinct mechanisms for the CXCR4 internalization such as dynamin-dependent endocytosis and macropinocytosis. Regardless of the endocytic mechanisms, colocalization of CXCR4 and Rab11 is observed, which could be involved not only in receptor recycling but also in its post-Golgi transport. In summary, this work highlights membrane trafficking pathways whose pharmacological targeting could subsequently result in the inactivation of one of the main guiding mechanisms used by metastatic cells to colonize secondary organs and tissues.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Membrane/metabolism , Liver Neoplasms/metabolism , Receptors, CXCR4/metabolism , Brefeldin A/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Membrane/drug effects , Chemokine CXCL12/pharmacology , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , Humans , Intracellular Space/metabolism , Liver Neoplasms/pathology , Pinocytosis/drug effects , Protein Transport/drug effects , Subcellular Fractions/metabolism , Vesicular Transport Proteins/metabolism
14.
Hepatology ; 58(6): 2032-44, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23813475

ABSTRACT

UNLABELLED: Transforming growth factor-beta (TGF-ß) is an important regulatory suppressor factor in hepatocytes. However, liver tumor cells develop mechanisms to overcome its suppressor effects and respond to this cytokine by inducing other processes, such as the epithelial-mesenchymal transition (EMT), which contributes to tumor progression and dissemination. Recent studies have placed chemokines and their receptors at the center not only of physiological cell migration but also of pathological processes, such as metastasis in cancer. In particular, CXCR4 and its ligand, stromal cell-derived factor 1α (SDF-1α) / chemokine (C-X-C motif) ligand 12 (CXCL12) have been revealed as regulatory molecules involved in the spreading and progression of a variety of tumors. Here we show that autocrine stimulation of TGF-ß in human liver tumor cells correlates with a mesenchymal-like phenotype, resistance to TGF-ß-induced suppressor effects, and high expression of CXCR4, which is required for TGF-ß-induced cell migration. Silencing of the TGF-ß receptor1 (TGFBR1), or its specific inhibition, recovered the epithelial phenotype and attenuated CXCR4 expression, inhibiting cell migratory capacity. In an experimental mouse model of hepatocarcinogenesis (diethylnitrosamine-induced), tumors showed increased activation of the TGF-ß pathway and enhanced CXCR4 levels. In human hepatocellular carcinoma tumors, high levels of CXCR4 always correlated with activation of the TGF-ß pathway, a less differentiated phenotype, and a cirrhotic background. CXCR4 concentrated at the tumor border and perivascular areas, suggesting its potential involvement in tumor cell dissemination. CONCLUSION: A crosstalk exists among the TGF-ß and CXCR4 pathways in liver tumors, reflecting a novel molecular mechanism that explains the protumorigenic effects of TGF-ß and opens new perspectives for tumor therapy.


Subject(s)
Carcinoma, Hepatocellular/physiopathology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition , Liver Neoplasms/physiopathology , Receptors, CXCR4/metabolism , Transforming Growth Factor beta1/biosynthesis , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Chemokine CXCL12 , Diethylnitrosamine , Female , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemically induced , Male , Mice , Middle Aged , Protein Serine-Threonine Kinases/drug effects , Receptor, Transforming Growth Factor-beta Type I , Receptors, CXCR4/biosynthesis , Receptors, Transforming Growth Factor beta/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...