Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
EFSA J ; 16(1): e05101, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625660

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Listronotus bonariensis (Coleoptera: Curculionidae), the Argentine stem weevil, for the EU. L. bonariensis is a well-defined species, recognised as a serious pest of pasture grasses, especially Lolium spp. and Poa annua, in New Zealand, and a rare pest of cereals in Argentina, Brazil and New Zealand. Larvae feed within the tillers and stems of grasses; adults can cut emerging cotyledons although they usually graze on leaves. Larval damage is most serious. Larval feeding causes a reduction in pasture quality that impacts on the production of grazing animals. L. bonariensis is not known to occur in the EU and is listed in Annex IIAI of Council Directive 2000/29/EC. L. bonariensis established in New Zealand via imported grass seeds and has been intercepted on grass seeds entering the EU. Considering the climatic similarities of the regions where the pest occurs and the very great extent to which hosts are grown across the EU, L. bonariensis has the potential to establish within the EU with two or three generations possible per year. Impacts could occur in grassland pastures and perhaps occasionally in cereals. In New Zealand, endophytic fungi occurring on potential hosts deter L. bonariensis from ovipositing on leaves and are toxic to larvae. Whether endophytic fungi on grasses in Europe could provide some resistance to L. bonariensis is uncertain. Phytosanitary measures are available to reduce the likelihood of introduction of this weevil. L. bonariensis fits all of the criteria assessed by EFSA to satisfy the definition of a Union quarantine pest. L. bonariensis does not meet the criterion of occurring in the EU territory for it to be regarded as a Union regulated non-quarantine pest.

2.
EFSA J ; 16(1): e05103, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625662

ABSTRACT

The European Commission requested EFSA to conduct a pest categorisation of Toxoptera citricida (Hemiptera: Aphididae), an oligophagous aphid developing and reproducing parthenogenetically on tender leaf and flower flush of citrus (Rutaceae). T. citricida is a taxonomic entity with reliable methods available for detection and identification. It is regulated in the EU by Council Directive 2000/29/EC where it is listed in Annex IIAI as a harmful organism whose introduction and spread into the EU shall be banned. T. citricida is native to tropical regions of Southeast Asia and has spread to most citrus-growing areas worldwide, except California and the Mediterranean basin, causing significant damage to citrus as it is the most efficient vector of the Citrus tristeza virus (CTV). T. citricida occurs in Madeira and, with a restricted distribution, in the north-west of the Iberian Peninsula, mostly on backyard citrus trees. This may have hindered the effectiveness of the official control measures in these areas. There are further phytosanitary measures in place in the EU in order to limit entry via traded commodities. Citrus plants for planting are regulated and are a closed pathway. However, there is uncertainty regarding host status of some non-rutaceous plants on which this aphid has been recorded and so other plant genera may provide additional pathways. The EFSA Plant Health Panel concludes that the establishment of T. citricida in the main EU citrus growing areas around the Mediterranean would have significant impacts because of its ability to vector CTV. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), as a potential protected zone quarantine pest (PZQP) or as a potential regulated non-quarantine pest (RNQP), T. citricida meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP.

3.
EFSA J ; 16(10): e05436, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32625716

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Aleurocanthus spp., a well-defined insect genus of the whitefly family Aleyrodidae (Arthropoda: Hemiptera). Difficulties within the taxonomy of the genus give doubt about the ability to accurately identify some members to species level. Nevertheless, the genus is thought to currently include about ninety species mainly reported from tropical and subtropical areas. The genus is listed in Council Directive 2000/29/EC and is regulated on Citrus, Fortunella and Poncirus. Several Aleurocanthus species are highly polyphagous; Aleurocanthus spiniferus has hosts in 38 plant families; Aleurocanthus woglumi has more than 300 hosts including Pyrus, Rosa and Vitis vinifera as well as Citrus. A. spiniferus is present in the EU in restricted areas of Italy and Greece, where it is under official control. No other Aleurocanthus spp. are known to occur in the EU. Host plants for planting, excluding seeds, and cut flowers or branches are the main pathways for entry. Outside of the EU, the genus can be found in regions that have climate types which also occur within the EU, suggesting establishment is possible. Aleurocanthus spp. can be significant pests of crops that are also grown in the EU. Phytosanitary measures are available to reduce the likelihood of entry into the EU, e.g. sourcing host plants for planting from pest free areas. As a genus Aleurocanthus does satisfy all the criteria that are within the remit of EFSA to assess and required by risk managers to give it consideration as a Union quarantine pest. Aleurocanthus does not meet all of the criteria to allow it consideration by risk managers as a Union regulated non-quarantine pest (RNQP). Specifically, Aleurocanthus is not widespread in the EU.

4.
EFSA J ; 16(3): e05187, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32625826

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the citrus snow scale, Unaspis citri (Comstock) (Hemiptera: Diaspididae), for the European Union (EU). This is a well-defined and distinguishable species, native to south-eastern Asia, which has spread to many tropical and subtropical regions. U. citri can be a pest of citrus and has been cited on over 28 different species in 16 plant families. In the EU, U. citri occurs in the Azores. There is uncertainty as to whether it occurs in continental Portugal. Reports of it occurring in Greece and Spain are likely to be invalid and based on interception records from these countries. An old Italian record is a misidentification. U. citri is listed in Annex IIAI of 2000/29/EC as a harmful organism. The international trade of hosts, as either plants for planting, fruit or cut flowers, provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants for planting from third countries. U. citri is mostly confined to coastal humid tropical areas and does not occur in semi-arid areas that are irrigated. Nevertheless, given that it occurs in the Azores and that there are regional climatic similarities between places where U. citri occurs and climates within the EU, and taking EU host distribution into account, U. citri has the potential to establish in the EU, especially in citrus-growing regions around the Mediterranean where losses in quality and yield of citrus could occur. Phytosanitary measures are available to inhibit the likelihood of introduction of U. citri. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), or as a potential regulated non-quarantine pest (RNQP), U. citri meets the criteria assessed by EFSA for consideration as a potential Union QP.

5.
EFSA J ; 16(3): e05188, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32625827

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the South African citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae), for the European Union (EU). This is a well-defined and distinguishable species, recognised as a pest of citrus and mangoes in South Africa, which has been cited on more than 70 different plants, including woody and herbaceous species. It feeds exclusively on young actively growing foliage and fruit. S. aurantii is not known to occur in the EU and is listed in Annex IIAI of 2000/29/EC as a harmful organism presenting a risk to EU plant health. The international trade of hosts as either plants for planting or cut flowers provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants. Furthermore, measures aimed at the import of plants for planting in a dormant stage (no young foliage or fruits present) with no soil/growing medium attached, decreases the likelihood of the pest entry with such plants. Interceptions have occurred on Eustoma grandiflorum cut flowers. Considering climatic similarities between some of the countries where S. aurantii occurs (South Africa, Australia) and the EU, its thermal biology and host distribution in the EU, S. aurantii has the potential to establish, especially in citrus-growing regions of the EU. S. aurantii would most probably breed all year long around the Mediterranean and could cause crop losses in citrus, especially oranges. Phytosanitary measures are available to inhibit the introduction of S. aurantii. Considering the criteria within the remit of EFSA to assess its status as a potential Union quarantine pest (QP) or as a potential regulated non-quarantine pest (RNQP), S. aurantii meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP.

6.
EFSA J ; 16(3): e05189, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32625828

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), for the European Union (EU). This is a well-defined and distinguishable species, occurring in North America and Asia. Its precise distribution in Asia is uncertain. S. citri is a pest of citrus and blueberries and has been cited on over 50 different host species in 33 plant families. Whether all plants reported as hosts are true hosts, allowing population development of S. citri, is uncertain. S. citri feeds exclusively on young actively growing foliage and fruit. It is not known to occur in the EU and is listed in Annex IIAI of 2000/29/EC as a harmful organism. The international trade of hosts, as either plants for planting or cut flowers, provide potential pathways into the EU. However, current EU legislation prohibits the import of citrus plants for planting. Furthermore, measures aimed at the import of plants for planting in a dormant stage (no young foliage or fruits present) with no soil/growing medium attached, decreases the likelihood of the pest's entry via other hosts. Considering that there are regional climatic similarities where S. citri occurs in the USA with climates in the EU, and taking EU host distribution into account, S. citri has the potential to establish in the EU, especially in citrus and blueberry growing regions around the Mediterranean where quality losses in citrus and yield losses in blueberry could occur. Phytosanitary measures are available to inhibit the likelihood of introduction of S. citri from infested countries. Considering the criteria within the remit of EFSA to assess its status as a potential Union quarantine pest (QP) or as a potential regulated non-quarantine pest (RNQP), S. citri meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union QP.

7.
EFSA J ; 16(4): e05245, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625877

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the weevil Anthonomus quadrigibbus Say, (Coleoptera: Curculionidae), for the EU. A. quadrigibbus is a well-defined and distinguishable species, recognised as an occasional pest of apples, pears and sour cherries in North America where it also feeds on a range of wild rosaceous plants such as Crataegus and Amelanchier. Adults feed on leaves, flowers and fruit. Feeding damage to fruit reduces quality. Females oviposit into young fruit, causing surface blemishes and resulting in distortion as the fruit develops. Marketability is subsequently reduced. Larvae and pupae develop within host fruit. Most infested fruit fall prematurely, reducing yield. A. quadrigibbus was regarded as a more serious pest in the early 20th century. A. quadrigibbus is not known to occur in the EU and is listed in Annex IIAI of Council Directive 2000/29/EC under the synonym Tachypterellus quadrigibbus. Host plants for planting and infested fruit could potentially provide a pathway into the EU. Considering the climatic similarities between North America and Europe, and that wild and commercial hosts occur widely within the EU, A. quadrigibbus has the potential to establish within the EU. There would be one generation per year, as in North America. Impacts could be expected in apple, pear and perhaps sour cherry orchards. The level of impacts would be uncertain. There is also uncertainty regarding whether A. quadrigibbus would extend its host range to include other Rosaceae within the EU. Phytosanitary measures are available to reduce the likelihood of introduction of A. quadrigibbus. All criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. As A. quadrigibbus is not known to occur in the EU, this criterion assessed by EFSA to consider it as a Union regulated non-quarantine pest is not met.

8.
EFSA J ; 16(4): e05247, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625879

ABSTRACT

Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of Sphaerulina musiva, a well-defined and distinguishable fungal species of the family Mycosphaerellaceae. Following a recent phylogenetic analysis of the genus Septoria and other closely related genera, a new name (S. musiva) was introduced for the species. The former species name Mycosphaerella populorum is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IAI as a harmful organism whose introduction into the EU is banned. S. musiva is reported from North and South America and not known to occur in the EU. S. musiva causes Septoria leaf spots and cankers of poplar (Populus spp.). Of the poplars native to Europe, Populus nigra is reported as susceptible and Populus tremula as susceptible when planted in North America. The hybrid Populus x canadensis (arising from a cross of P. nigra and the North American Populus deltoides), widely grown in the EU, is also susceptible. The pest could enter the EU on plants for planting, cut branches, isolated bark and wood with and without bark. S. musiva could establish in the EU, as hosts are common and favourable climatic conditions are widespread, and could spread following establishment by natural dispersal and movement of infected plants for planting, cut branches, isolated bark and wood with or without bark. The pest introduction would have impacts in woodlands, plantations and nurseries. The pathogen is considered the most serious disease affecting hybrid poplar production in North America. Selection, breeding and planting of resistant species and clones are the main methods used to control the damage caused by the pathogen. There is some uncertainty on the geographical distribution of the pest in the Caucasus, the Crimean Peninsula and South America and on the level of susceptibility among Populus species native to Europe as well as Salix spp. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

9.
EFSA J ; 16(7): e05353, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32625986

ABSTRACT

Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of Lopholeucaspis japonica (Hemiptera: Diaspididae), an armoured scale which preferentially feeds on smooth barked woody trees and shrubs. The pest occurs in Asia, North America and non-EU Europe (Caucasus region and Ukraine). The pest is regulated in Council Directive 2000/29/EC as Leucaspis japonica, a junior synonym. Its introduction into the EU is banned on plants of Citrus, Fortunella, Poncirus and their hybrids, other than fruit and seeds. Additional host plants comprise 60 species in 35 botanical families, including deciduous fruit trees, ornamental and forest plants. L. japonica could enter the EU via host plants for planting (excluding seeds) and cut branches. It has been intercepted on plants for planting from China, including artificially dwarfed plants. Spread is most likely via plants for planting, rather than via natural spread as most diaspidid life stages are sessile. Impacts could occur in citrus, other fruit crops, ornamentals and forest trees. Sourcing plants from pest-free areas, pest-free places of production or pest-free production sites would decrease the likelihood of introduction. Because suitable hosts occur across the EU in climatic areas matching those where the pest is known to occur, biotic and abiotic conditions are conducive to establishment. The main uncertainty concerns its current distribution in the EU. L. japonica was found in Greece in 1983, but there have been no other reports since then. L japonica satisfies the criteria assessed by EFSA that enable it to be considered a potential quarantine pest. L. japonica does not satisfy the criteria assessed by EFSA for it to be considered a potential regulated non-quarantine pest (RNQP).

10.
EFSA J ; 16(8): e05351, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32626012

ABSTRACT

EFSA was asked for a partial risk assessment of Spodoptera frugiperda for the territory of the EU focussing on the main pathways for entry, factors affecting establishment, risk reduction options and pest management. As a polyphagous pest, five commodity pathways were examined in detail. Aggregating across these and other pathways, we estimate that tens of thousands to over a million individual larvae could enter the EU annually on host commodities. Instigating risk reduction options on sweetcorn, a principal host, reduces entry on that pathway 100-fold. However, sweetcorn imports are a small proportion of all S. frugiperda host imports, several of which are already regulated and further regulation is estimated to reduce the median number entering over all pathways by approximately 10%. Low temperatures limit the area for establishment but small areas of Spain, Italy and Greece can provide climatic conditions suitable for establishment. If infested imported commodities are distributed across the EU in proportion to consumer population, a few hundreds to a few thousands of individuals would reach NUTS 2 regions within which suitable conditions for establishment exist. Although S. frugiperda is a known migrant, entry directly into the EU from extant populations in sub-Saharan Africa is judged not feasible. However, if S. frugiperda were to establish in North Africa, in the range of thousands to over two million adults could seasonally migrate into the southern EU. Entry into suitable NUTS2 areas via migration will be greater than via commercial trade but is contingent on the establishment of S. frugiperda in North Africa. The likelihood of entry of the pest via natural dispersal could only be mitigated via control of the pest in Africa. If S. frugiperda were to arrive and become a pest of maize in the EU, Integrated Pest Management (IPM) or broad spectrum insecticides currently used against existing pests could be applied.

11.
EFSA J ; 15(10): e05027, 2017 Oct.
Article in English | MEDLINE | ID: mdl-32625316

ABSTRACT

The EFSA Panel on Plant Health performed a pest categorisation for the Witches' broom disease of lime (Citrus aurantifolia) phytoplasma for the EU territory. The pest has been reported in a few countries in the Middle East and is not known to occur in the EU. The disease is caused by a well-defined phytoplasma strain in the 'Candidatus Phytoplasma aurantifolia' species, for which efficient molecular detection assays are available. The most important known natural host is Citrus aurantifolia, which is only grown for ornamental purposes in the EU. Sweet limes, rough lemon and trifoliate orange are also naturally infected by that phytoplasma. The latter can be transmitted by grafting also to some citrus species. Other citrus species were reported to be resistant; however, their susceptibility has been assessed only by symptom observations, and the possible presence of phytoplasmas in symptomless plants cannot be ruled out. The phytoplasma is transmitted by the leafhopper Hishimonus phycitis, which is not known to occur in the EU. There is no information on the vector status of other phloem feeding insects of citrus present in the EU. The pest is listed in Annex IIAI of Directive 2000/29/EC. The main pathways for entry, plants for planting and the vector insect, are closed by existing legislation on import of citrus plants. Nevertheless, should the pest enter, it could establish and spread. In countries where Witches' broom disease of lime (WBDL) is present, it has significant impact. The main knowledge gaps concern (1) and vertical transmission of the phytoplasma to H. phycitis eggs (2) lack of information regarding susceptibility of citrus crops grown in the EU (3) status of potential insect vectors in the EU. Therefore, the WBDL phytoplasma meets the criteria assessed by EFSA for consideration as a potential Union quarantine pest.

12.
EFSA J ; 15(10): e05037, 2017 Oct.
Article in English | MEDLINE | ID: mdl-32625321

ABSTRACT

The Panel on Plant Health performed a pest categorisation of Hishimonus phycitis (Hemiptera: Cicadellidae) for the EU. H. phycitis is a well-defined species, occurring in tropical and subtropical Asian countries from Iran to Malaysia. H. phycitis is polyphagous. Hosts of particular relevance to the EU include Citrus spp. and Solanum melongena. While harmful in its own right as a leafhopper extracting host nutrients through feeding, it is regarded in the Middle East more significantly as a vector of Witches' broom disease of lime phytoplasma, which limits production of Citrus aurantifolia, and in India as a vector of brinjal little-leaf phytoplasma impacting S. melongena yields. H. phycitis is currently regulated by Council Directive 2000/29/EC, listed in Annex II/AI as Hishomonus phycitis (sic). Eggs planted on host plants for planting could provide a pathway for entry into the EU. The EU has eco-climatic conditions that are also found in countries where H. phycitis occurs although it is unknown whether H. phycitis occurs in those areas. There is therefore considerable uncertainty around EU establishment. Any establishment is likely to be limited to the warmest areas around the Mediterranean. As a free-living organism with adults capable of flight, spread within the EU would be possible but confined to the limited area where establishment could occur. Measures are available to inhibit entry via traded commodities (e.g. prohibition on the introduction of Citrus plants for planting; sourcing other hosts from pest free areas). H. phycitis does satisfy all of the criteria that are within the remit of EFSA to assess to be regarded as a Union quarantine pest. It is uncertain if eggs of H. phycitis would carry phytoplasmas into the EU as transovarial transmission from infected females to eggs has not been demonstrated.

13.
EFSA J ; 15(12): e05073, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32625369

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the strawberry blossom weevil, Anthonomus bisignifer Schenkling, (Coleoptera: Curculionidae), for the EU. Anthonomus bisignifer is a well-defined and distinguishable species, recognised as an occasional pest of strawberry (Fragaria) fruit production in Japan where it is also feeds on Rubus and Rosa spp. Adults clip developing buds, preventing fruit development and reducing yield. Losses are variable and are likely to depend on the cultivars attacked. Severe damage to Fragaria spp. has been reported but is rare. Flowers of ornamental garden Rosa spp. are more commonly damaged. Anthonomus bisignifer is not known to occur in the EU. A. bisignifer is listed in Annex IIAI of Council Directive 2000/29/EC. Host plants for planting could provide a pathway although only a few non-EU countries can export Fragaria plants for planting to the EU and A. bisignifer is not known to occur in any of them. However, Rubus and Rosa plants for planting could provide a potential pathway to introduce A. bisignifer. Considering climatic similarities of the region where A. bisignifer occurs and where hosts occur in the EU, A. bisignifer has the potential to establish within the EU. There would be one generation per year, as in Japan. Impacts could be expected on field grown and protected Fragaria, field grown Rubus and garden Rosa spp. There is uncertainty regarding which other hosts exist within Rosaceae, hence impacts could potentially be seen on other species too. Phytosanitary measures are available to reduce the likelihood of introduction of A. bisignifer. All criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. As A. bisignifer is not known to occur in the EU, this criterion assessed by EFSA to consider it as a Union regulated non-quarantine pest is not met.

14.
EFSA J ; 15(12): e05074, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32625370

ABSTRACT

The European Commission requested EFSA to conduct a pest categorisation of Anthonomus grandis (Coleoptera: Curculionidae), an oligophagous pest weevil feeding on Malvaceae, including Gossypium spp., Hampea spp., Cienfuegosia spp. and Hibiscus pernambucensis. Marginal reproduction has also been observed on the ornamental Hibiscus syriacus. A. grandis is a taxonomic entity with reliable methods available for identification. It is regulated in the EU by Council Directive 2000/29/EC where it is listed in Annex IIB as a harmful organism whose introduction into EU Protected Zones (PZ) (Greece and the Spanish Communities of Andalusia, Catalonia, Extremadura, Murcia and Valencia) is regulated. A. grandis is native to tropical regions of Mesoamerica and has spread to other cotton-growing areas in the Americas, from the USA to Argentina, causing significant damage to this crop. An eradication programme is in progress in the USA and has been successful in 16 previously infested states. In the EU, phytosanitary measures are in place in order to limit entry via traded commodities. Cotton seeds and fruit, as well as unginned cotton are currently regulated for the PZ but remain a potential pathway. Furthermore, ornamental Malvaceae (e.g. Hibiscus spp.) originating in infested areas may provide additional pathways. The EFSA Plant Health Panel concludes that A. grandis could establish and spread in the cotton-growing areas of southern EU. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest (QP), as a potential protected zone quarantine pest (PZQP), or as a potential regulated non-quarantine pest (RNQP), A. grandis satisfies with no uncertainties the criteria to be regarded as a Union QP. However, it does not meet the criterion of occurrence in the EU territory (for PZQP) plus that of plants for planting being the principal means of spread (for RNQP).

15.
EFSA J ; 15(7): e04882, 2017 Jul.
Article in English | MEDLINE | ID: mdl-32625547

ABSTRACT

The Panel on Plant Health performed a pest categorisation of the strawberry bud weevil, Anthonomus signatus Say, (Coleoptera: Curculionidae), for the EU. A. signatus is a well-defined and distinguishable species, recognised as a pest of strawberry (Fragaria) fruit production in eastern North America where it is also a pest of Rubus. There are reports of A. signatus associated with non-rosaceous plants such as Mentha, Nepeta, Rhododendron and Solidago although whether such plants are true hosts is uncertain. This pest categorisation focuses on Fragaria and Rubus as hosts. Anthonomus signatus is not known to occur in the EU. It is listed in Annex IIAI of Council Directive 2000/29/EC. The international trade in Fragaria and Rubus plants for planting provides a potential pathway to introduce A. signatus from North America. Considering climatic similarities between North America and the EU, the thermal biology of A. signatus and host distribution in the EU, A. signatus has the potential to establish within the EU. There would be one generation per year, as in North America. As a pest of field grown Fragaria and Rubus, A. signatus would not be expected to establish in EU glasshouses. In North America, adults clip developing buds, preventing fruit development and reducing yield. Losses are variable and depend on the cultivars attacked. Severe crop losses have been reported. However, some Fragaria cultivars can compensate the loss of buds, e.g. by increasing the weight of fruits developing on remaining buds. Phytosanitary measures are available to reduce the likelihood of introduction of A. signatus from North America. All criteria assessed by EFSA for consideration as a potential Union quarantine pest are met. As A. signatus is not known to occur in the EU, this criterion assessed by EFSA to consider it as a Union regulated non-quarantine pest is not met.

16.
EFSA J ; 15(7): e04925, 2017 Jul.
Article in English | MEDLINE | ID: mdl-32625581

ABSTRACT

Following a request from the European Commission, the EFSA Plant Health (PLH) Panel performed a pest categorisation of Entoleuca mammata, a well-defined and distinguishable fungus of the family Xylariaceae native to North America. The species was moved from the genus Hypoxylon to the genus Entoleuca following a revision of the genus. The former species name H. mammatum is used in the Council Directive 2000/29/EC. E. mammata is the causal agent of Hypoxylon canker of quaking aspen (Populus tremuloides) and other poplars (Populus spp.). The pathogen has been reported in 16 EU Member States (MS), without apparent limiting ecoclimatic factors, but mostly (with the exception of Sweden) with a restricted distribution. E. mammata is a protected zone (PZ) quarantine pest (Annex IIB) for Ireland and the UK (Northern Ireland). The main hosts present in the EU (P. tremula, P. nigra and hybrid poplars) are widespread throughout most of the risk assessment area, including the PZ. The main means of spread are wind-blown ascospores, plants for planting and wood with bark. E. mammata is not currently reported to be of significant economic importance in the EU MS where the pathogen is reported, but has been shown to cause significant damage in the USA. Risk reduction options include appropriate site selection for poplar plantations, avoiding wounds, and debarking wood. The main uncertainties concern the distribution of the pathogen in the EU, the susceptibility of cultivated hybrid poplars to the pathogen and thus the potential damage to poplar plantations in the RA area. The criteria assessed by the Panel for consideration as potential PZ quarantine pest are met. The criterion of plants for planting being the main pathway for spread for regulated non-quarantine pests is not met: plants for planting are only one of the means of spread of the pathogen.

17.
EFSA J ; 15(7): e04927, 2017 Jul.
Article in English | MEDLINE | ID: mdl-32625583

ABSTRACT

The European Commission requested EFSA to conduct a pest categorisation of Spodoptera frugiperda (Lepidoptera: Noctuidae) a pest with hosts in 27 plant families. Favoured hosts include maize, rice and sorghum (Poaceae). Hosts also include crops within the Brassicaceae, Cucurbitaceae, Solanaceae, Rutaceae and other families. S. frugiperda is a taxonomic entity with reliable methods for identification. It is regulated in the EU as a harmful organism whose introduction into the EU is banned. It is native to tropical and subtropical regions of the Americas and migrates to temperate regions in North and South America during the summer. Establishment in temperate areas is prevented by its inability to overwinter. S. frugiperda has been intercepted on plant produce entering the EU. Phytosanitary measures are available to impede entry via traded commodities. In 2016, S. frugiperda was reported damaging maize in Africa. Subsequent reports indicate that it continues to spread severely damaging maize and other crops. If S. frugiperda spreads into north Africa, the likelihood of adults migrating into the temperate EU increases. Within the scope and level of analysis appropriate for pest categorisation, the EFSA Plant Health Panel concludes that S. frugiperda could establish in a small area of the southern EU from where it is likely to enter more northern regions forming transient summer populations, particularly in maize growing regions where impacts on yield could occur. However, uncertainties regarding establishment remain. Considering the criteria within the remit of EFSA to assess as regards status as a potential Union quarantine pest (QP) or as a potential regulated non-quarantine pest (RNQP), S. frugiperda satisfies the criteria to be regarded a Union QP but does not meet the criteria of (i) occurring in the EU territory, and (ii) plants for planting being the principal means of spread, criteria required for RNQP status.

18.
EFSA J ; 15(9): e04924, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32625637

ABSTRACT

As requested by the European Commission, the EFSA Panel on Plant Health (PLH) Panel assessed the risk of Diaporthe vaccinii in the EU, focusing on entry, establishment, spread and impacts on cultivated and wild Vaccinium species, the principal hosts being American and European cranberry and blueberry. Several outbreaks occurred in the EU since 1956, but most were eradicated except in Latvia. The Panel considered entry via fruits and plants for planting. The risk of establishment from discarded infected berries is much lower than from infected plants for planting, of which, potted plants and cuttings pose the greatest risk, while plug plants, derived from tissue culture and grown in pest free structures, pose a low risk. Nine per cent of the EU is highly suitable for establishment of the pathogen, mostly in the SE and NE. Following establishment, the pathogen could spread naturally over short range, and by human assistance over long range. Calculations with an integrated model for entry, establishment and spread, indicate that with current regulations, over a period of 5 years, a few hundred cultivated Vaccinium plants and several thousand Vaccinium plants in natural ecosystems would contract the disease. The associated loss of commercial production is small, less than one tonne of berries per year. On natural vegetation, the median impact after 5 years was estimated to be negligible affecting a negligible proportion of the natural Vaccinium population (2 × 10-8). However, the uncertainty of this estimate was high, due to uncertainty about the rate of spread; in a worst-case scenario (99th percentile), almost 1% of plants in natural areas would become infected. Complete deregulation (scenario A1) was predicted to increase the impact substantially, especially in natural areas, while additional measures (scenario A2) would effectively eliminate the entry of infected plants for planting, further reducing the impacts below the current situation.

SELECTION OF CITATIONS
SEARCH DETAIL
...