Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 754: 109944, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395124

ABSTRACT

The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.


Subject(s)
Blood Platelets , Receptors, IgG , Humans , Receptors, IgG/metabolism , Blood Platelets/chemistry , Blood Platelets/metabolism , Cell Membrane/metabolism , Signal Transduction , Collagen/metabolism
4.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955743

ABSTRACT

Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.


Subject(s)
Platelet Adhesiveness , Platelet Membrane Glycoproteins , Animals , Blood Platelets/metabolism , Collagen/metabolism , Dogs , Epitopes/metabolism , Guinea Pigs , Humans , Mice , Platelet Activation , Platelet Aggregation , Platelet Membrane Glycoproteins/metabolism , Rabbits , Rats
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807278

ABSTRACT

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Subject(s)
Autophagy/genetics , Glycogen Storage Disease Type II/genetics , alpha-Glucosidases/genetics , Adult , Aged , Autophagy/physiology , Enzyme Replacement Therapy/methods , Family , Female , Genetic Variation/genetics , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/metabolism , Mutation , Pedigree , Respiratory Muscles , Siblings , alpha-Glucosidases/metabolism
6.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008781

ABSTRACT

In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbß3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , Collagen/pharmacology , Thromboplastin/pharmacology , Thrombosis/pathology , Blood Coagulation/drug effects , Blood Platelets/drug effects , Factor VIIa/metabolism , Fibrin/metabolism , Humans , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Proteinase-Activated/metabolism , Signal Transduction , Syk Kinase/metabolism , Time Factors
7.
Thromb Haemost ; 120(4): 538-564, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32289858

ABSTRACT

Thrombo-inflammation describes the complex interplay between blood coagulation and inflammation that plays a critical role in cardiovascular diseases. The third Maastricht Consensus Conference on Thrombosis assembled basic, translational, and clinical scientists to discuss the origin and potential consequences of thrombo-inflammation in the etiology, diagnostics, and management of patients with cardiovascular disease, including myocardial infarction, stroke, and peripheral artery disease. This article presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3) procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial vascular disease; and (6) pathogenesis of venous thrombosis and late consequences of venous thromboembolism.


Subject(s)
Atherosclerosis/immunology , Cardiovascular Diseases/immunology , Endothelium, Vascular/physiology , Inflammation/immunology , Neutrophils/immunology , Venous Thromboembolism/immunology , Animals , Atherosclerosis/diagnosis , Atherosclerosis/therapy , Blood Coagulation , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , Expert Testimony , Humans , Immunity, Innate , Thrombosis , Venous Thromboembolism/diagnosis , Venous Thromboembolism/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...