Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Islets ; 14(1): 164-183, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35838041

ABSTRACT

Transplantation of pancreatic islets is a promising approach to controlling glucose levels in type 1 diabetes mellitus (T1DM), but islet survival is still limited. To overcome this, islet co-culture with mesenchymal stromal cells (MSCs) together with safe immunosuppressive agents like squalene-gusperimus nanoparticles (Sq-GusNPs) may be applied. This could support islet survival and engraftment. Here, we studied how Sq-GusNPs and adipose-derived stem cells (ASCs) influence islets response under pro-inflammatory conditions. Through qRT-PCR, we studied the expression of specific genes at 24 hours in human and rat islets and ASCs in co-culture under indirect contact with or without treatment with Sq-GusNPs. We characterized how the response of islets and ASCs starts at molecular level before impaired viability or function is observed and how this response differs between species. Human islets and ASCs responses showed to be principally influenced by NF-κB activation, whereas rat islet and ASCs responses showed to be principally mediated by nitrosative stress. Rat islets showed tolerance to inflammatory conditions due to IL-1Ra secretion which was also observed in rat ASCs. Human islets induced the expression of cytokines and chemokines with pro-angiogenic, tissue repair, and anti-apoptotic properties in human ASCs under basal conditions. This expression was not inhibited by Sq-GusNPs. Our results showed a clear difference in the response elicited by human and rat islets and ASCs in front of an inflammatory stimulus and Sq-GusNPs. Our data support the use of ASCs and Sq-GusNP to facilitate engraftment of islets for T1DM treatment.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Nanoparticles , Animals , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Guanidines , Humans , Immunosuppressive Agents , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Rats , Squalene/metabolism , Stem Cells/metabolism
2.
Artif Cells Nanomed Biotechnol ; 49(1): 651-661, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34751061

ABSTRACT

Gusperimus is an anti-inflammatory drug that has shown to be effective in managing autoimmunity and preventing graft rejection. This is unstable and easily broken down into cytotoxic components. We encapsulated gusperimus binding it covalently to squalene obtaining squalene-gusperimus nanoparticles (Sq-GusNPs). These nanoparticles enhanced the immunosuppressive effect of gusperimus in both mouse macrophages and T cells. The half-maximal inhibitory concentration in macrophages was 9-fold lower for Sq-GusNPs compared with the free drug. The anti-inflammatory effect of the Sq-GusNPs was maintained over time without cytotoxicity. By studying nanoparticles uptake by cells with flow cytometry, we demonstrated that Sq-GusNPs are endocytosed by macrophages after binding to low-density lipoprotein receptors (LDLR). In presence of cathepsin B or D release of gusperimus is increased demonstrating the participation of proteases in the release process. Our approach may allow the application of Sq-GusNPs for effective management of inflammatory disorders including autoimmunity and graft rejection.


Subject(s)
Nanoparticles , Squalene , Animals , Guanidines/metabolism , Macrophages/metabolism , Mice , Squalene/metabolism , Squalene/pharmacology
3.
Biomaterials ; 266: 120460, 2021 01.
Article in English | MEDLINE | ID: mdl-33099059

ABSTRACT

Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.


Subject(s)
Diabetes Mellitus, Experimental , Graft Survival , Islets of Langerhans Transplantation , Pectins , Toll-Like Receptor 2 , Alginates , Animals , Capsules , Diabetes Mellitus, Experimental/therapy , Heterografts , Immunity , Mice , Polymers , Rats
4.
Int J Pharm ; 590: 119893, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32956823

ABSTRACT

Immunosuppressive drugs are widely used for the treatment of autoimmune diseases and to prevent rejection in organ transplantation. Gusperimus is a relatively safe immunosuppressive drug with low cytotoxicity and reversible side effects. It is highly hydrophilic and unstable. Therefore, it requires administration in high doses which increases its side effects. To overcome this, here we encapsulated gusperimus as squalene-gusperimus nanoparticles (Sq-GusNPs). These nanoparticles (NPs) were obtained from nanoassembly of the squalene gusperimus (Sq-Gus) bioconjugate in water, which was synthesized starting from squalene. The size, charge, and dispersity of the Sq-GusNPs were optimized using the response surface methodology (RSM). The colloidal stability of the Sq-GusNPs was tested using an experimental block design at different storage temperatures after preparing them at different pH conditions. Sq-GusNPs showed to be colloidally stable, non-cytotoxic, readily taken up by cells, and with an anti-inflammatory effect sustained over time. We demonstrate that gusperimus was stabilized through its conjugation with squalene and subsequent formation of NPs allowing its controlled release. Overall, the Sq-GusNPs have the potential to be used as an alternative in approaches for the treatment of different pathologies where a controlled release of gusperimus could be required.


Subject(s)
Nanoparticles , Squalene , Guanidines , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...