Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121941, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36208579

ABSTRACT

Raman spectroscopy was employed to study the thermal denaturation of three different proteins, bovine serum albumin (BSA), lysozyme, ovalbumin; and the decomposition temperature of three amino acids, l-glutamine, l-cysteine, and l-alanine, all of them as lyophilized powders. All the Raman bands observed in the spectra obtained were recorded and analyzed at preset heating temperatures. The results obtained for either protein denaturation temperature TD and amino acid decomposition temperatures TM-dc, were compared with those measured by differential scanning calorimetry (DSC). The DSC and Raman results were additionally corroborated with a thermogravimetric analysis (TGA) for the case of proteins. This exercise indicated almost complete coincidence in the determination of these transition temperatures between the three techniques, evidencing the applicability of Raman spectroscopy in the study of denaturation and decomposition temperatures of proteins and amino acids.


Subject(s)
Amino Acids , Spectrum Analysis, Raman , Protein Denaturation , Temperature , Spectrum Analysis, Raman/methods , Calorimetry, Differential Scanning
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120269, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34418811

ABSTRACT

In the present work the temperature response of the constitutive S1 segment of the SARS-CoV-2 Spike Glycoprotein (GPS) has been studied. The intensity of the Raman bands remained almost constant before reaching a temperature of 133 °C. At this temperature a significant reduction of peak intensities was observed. Above 144 °C the spectra ceased to show any recognizable feature as that of the GPS S1, indicating that it had transformed after the denaturation process that it was subjected. The GPS S1 change is irreversible. Hence, Raman Spectroscopy (RS) provides a precision method to determine the denaturation temperature (TD) of dry powder GPS S1. The ability of RS was calibrated through the reproduction of TD of other well studied proteins as well as those of the decomposition temperature of some amino acids (AA). Through this study we established a TD of 139 ± 3 °C for powder GPS S1 of SARS-CoV-2.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2 , Spectrum Analysis, Raman , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...