Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 10(14): 4082-4088, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-31049190

ABSTRACT

Enzymatic catalysis is of great importance to the chemical industry. However, we are still scratching the surface of the potential of biocatalysis due to the limited operating range of enzymes in harsh environments or their low recyclability. The role of Metal-Organic Frameworks (MOFs) as active supports to help overcome these limitations, mainly by immobilization and stabilization of enzymes, is rapidly expanding. Here we make use of mild heating and a non-polar medium during incubation to induce the translocation of a small enzyme like protease in the mesoporous MOF MIL-101(Al)-NH2. Our proteolytic tests demonstrate that protease@MIL-101(Al)-NH2 displays higher activity than the free enzyme under all the conditions explored and, more importantly, its usability can be extended to extreme conditions of pH and high temperatures. MOF immobilization is also effective in providing the biocomposite with long-term stability, recyclability and excellent compatibility with competing enzymes. This simple, one-step infiltration strategy might accelerate the discovery of new MOF-enzyme biocatalysts that meet the requirements for biotechnological applications.

2.
Dalton Trans ; 47(31): 10654-10659, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-29850707

ABSTRACT

We investigate the structural response of a dense peptide metal-organic framework using in situ powder and single-crystal X-ray diffraction under high-pressures. Crystals of Zn(GlyTyr)2 show a reversible compression by 13% in volume at 4 GPa that is facilitated by the ability of the peptidic linker to act as a flexible string for a cooperative response of the structure to strain. This structural transformation is controlled by changes to the conformation of the peptide, which enables a bond rearrangement in the coordination sphere of the metal and changes to the strength and directionality of the supramolecular interactions specific to the side chain groups in the dipeptide sequence. Compared to other structural transformations in Zn(ii) peptide MOFs, this behaviour is not affected by host/guest interactions and relies exclusively on the conformational flexibility of the peptide and its side chain chemistry.

3.
Adv Mater ; 30(10)2018 Mar.
Article in English | MEDLINE | ID: mdl-29341257

ABSTRACT

Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self-assembled monolayer substrate modification and bottom-up techniques are used to produce preferentially oriented, ultrathin, conductive films of Cu-CAT-1. The approach permits to fabricate and study the electrical response of MOF-based devices incorporating the thinnest MOF film reported thus far (10 nm thick).

4.
J Am Chem Soc ; 139(12): 4294-4297, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28274119

ABSTRACT

We report the use of a chiral Cu(II) 3D metal-organic framework (MOF) based on the tripeptide Gly-l-His-Gly (GHG) for the enantioselective separation of metamphetamine and ephedrine. Monte Carlo simulations suggest that chiral recognition is linked to preferential binding of one of the enantiomers as a result of either stronger or additional H-bonds with the framework that lead to energetically more stable diastereomeric adducts. Solid-phase extraction of a racemic mixture by using Cu(GHG) as the extractive phase permits isolating >50% of the (+)-ephedrine enantiomer as target compound in only 4 min. To our knowledge, this represents the first example of a MOF capable of separating chiral polar drugs.


Subject(s)
Copper/chemistry , Ephedrine/isolation & purification , Metal-Organic Frameworks/chemistry , Methamphetamine/isolation & purification , Peptides/chemistry , Ephedrine/chemistry , Methamphetamine/chemistry , Molecular Dynamics Simulation , Molecular Structure , Monte Carlo Method , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...