Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(12): 14484-14494, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32129067

ABSTRACT

Effective manipulation of the magnetic properties of nanostructured metallic alloys, exhibiting intergrain porosity (i.e., channels) and conformally coated with insulating oxide nanolayers, with an electric field is demonstrated. Nanostructured Co-Pt films are grown by electrodeposition (ED) and subsequently coated with either AlOx or HfOx by atomic layer deposition (ALD) to promote magneto-ionic effects (i.e., voltage-driven ion migration) during electrolyte gating. Pronounced variations in coercivity (HC) and magnetic moment at saturation (mS) are found at room temperature after biasing the heterostructures. The application of a negative voltage results in a decrease of HC and an increase of mS, whereas the opposite trend is achieved for positive voltages. Although magneto-ionic phenomena are already observed in uncoated Co-Pt films (because of the inherent presence of oxygen), the ALD oxide nanocoatings serve to drastically enhance the magneto-ionic effects because of partially reversible oxygen migration, driven by voltage, across the interface between AlOx or HfOx and the nanostructured Co-Pt film. Co-Pt/HfOx heterostructures exhibit the most significant magneto-electric response at negative voltages, with an increase of mS up to 76% and a decrease of HC by 58%. The combination of a nanostructured magnetic alloy and a skinlike insulating oxide nanocoating is shown to be appealing to enhance magneto-ionic effects, potentially enabling electrolyte-gated magneto-ionic technology.

2.
Nanoscale ; 12(14): 7749-7758, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32211634

ABSTRACT

Homogeneous mesoporous Ni-rich Ni-Pt thin films with adjustable composition have been synthesised by one-step micelle-assisted electrodeposition. The films exhibit a face-centred cubic solid solution (single phase) and their magnetic and mechanical properties can be tuned by varying the alloy composition. In particular, the Curie temperature (TC) is shown to decrease with the Pt content and thin films with a TC close to room temperature (i.e. Ni58Pt42) and below can be produced. Hysteresis loops show a decrease of saturation magnetisation (Ms) and coercivity (Hc) with decreasing Ni content. A comparison of porous and dense films reveals significantly lower saturation magnetic field strength for porous films. Concerning mechanical properties, mainly two trends can be observed: a decrease of the Young's modulus of the nanoporous films with respect to dense films by 10% in average and a progressive increase of Young's modulus with the Ni content from 4.2 GPa to 5.7 GPa in both types of films. The tunability of properties and facility of synthesis make this alloy a promising material for microelectromechanical systems (MEMS).

3.
ACS Appl Mater Interfaces ; 10(51): 44897-44905, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30520631

ABSTRACT

A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co-Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2- migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned "nano-in-micro" magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.

4.
Mikrochim Acta ; 185(5): 255, 2018 04 14.
Article in English | MEDLINE | ID: mdl-29656323

ABSTRACT

Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L-1) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

SELECTION OF CITATIONS
SEARCH DETAIL
...