Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(17): 16273-90, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21934991

ABSTRACT

A new class of multi-material fiber that incorporates micrometer-thickness concentric-cylindrical sheets of glass into polymer matrix has emerged. The ultimate lower limit of feature size and recent observation of interesting instability phenomenon in fiber system motivate us to examine fluid instabilities during the complicated thermal drawing fabrication processing. In this paper, from the perspective of a single instability mechanism, classical Plateau-Rayleigh instabilities in the form of radial fluctuation, we explore the stability of various microstructures (such as shells and filaments) in our composite fibers. The attained uniform structures are consistent with theoretical analysis. Furthermore, a viscous materials map is established from calculations and agrees well with various identified materials. These results not only shed insights into other forms of fluid instabilities, but also provide guidance to achieve more diverse nanostructures (such as filaments, wires, and particles) in the microstructured fibers.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056113, 2009 May.
Article in English | MEDLINE | ID: mdl-19518527

ABSTRACT

In analogy to gas-dynamical detonation waves, which consist of a shock with an attached exothermic reaction zone, we consider herein nonlinear traveling wave solutions to the hyperbolic ("inviscid") continuum traffic equations. Generic existence criteria are examined in the context of the Lax entropy conditions. Our analysis naturally precludes traveling wave solutions for which the shocks travel downstream more rapidly than individual vehicles. Consistent with recent experimental observations from a periodic roadway [Y. Sugiyama, N. J. Phys. 10, 033001 (2008)], our numerical calculations show that nonlinear traveling waves are attracting solutions, with the time evolution of the system converging toward a wave-dominated configuration. Theoretical principles are elucidated by considering examples of traffic flow on open and closed roadways.

SELECTION OF CITATIONS
SEARCH DETAIL
...