Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(9): 093525, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182521

ABSTRACT

The most performant deuterium-tritium (DT) plasma discharges realized by the Joint European Torus (JET) tokamak in the recent DT campaign have produced neutron yields on the order of 1018 n/s. At such high neutron yields, gamma-ray spectroscopy measurements with scintillators are challenging as events from the neutron-induced background often dominate over the signal, leading to a significant fraction of pileup events and instability of the photodetector gain along with the consequent degradation of the reconstructed spectrum. Here, we describe the solutions adopted for the tangential lanthanum bromide spectrometer installed at JET. A data acquisition system with free streaming mode digitization capabilities for the entire duration of the discharge has been used to solve dead-time related issues and a data reconstruction code with pileup recovery and photodetector gain drift restoration has been implemented for off-line analysis of the data. This work focuses on the acquired data storage and parsing, with a detailed explanation of the pileup recovery and gain drift restoration algorithms.

2.
Rev Sci Instrum ; 93(9): 093520, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182523

ABSTRACT

A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program. These have been tested for the first time in DTE2 and a concise overview is provided here. Confined alpha particle measurements by gamma-ray spectroscopy were successfully demonstrated, albeit with limitations at neutron rates higher than some 1017 n/s. High resolution neutron spectroscopy measurements with the magnetic proton recoil instrument were complemented by novel data from a set of synthetic diamond detectors, which enabled studies of the supra-thermal contributions to the neutron emission. In the area of escaping fast ion diagnostics, a lost fast ion detector and a set of Faraday cups made it possible to determine information on the velocity space and poloidal distribution of the lost alpha particles for the first time. This extensive set of data provides unique information for fundamental physics studies and validation of the numerical models, which are key to inform the physics and scenarios of ITER.

3.
Rev Sci Instrum ; 87(11): 11E557, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910313

ABSTRACT

This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature Ti and the toroidal velocity vϕ from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and vϕ particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.

4.
Phys Rev Lett ; 111(12): 125003, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093268

ABSTRACT

Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear.

5.
Phys Rev Lett ; 111(5): 055005, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952414

ABSTRACT

The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

6.
Nanotechnology ; 24(35): 355702, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23924892

ABSTRACT

We show that electrochemical formation of long probes with nanosharp tips can be controlled by choosing an appropriate thermodynamic pathway of metal to metal oxide and hydroxide transformation. Currently, convection-limited electropolishing (CLE) is extensively used. Nanosharp probes are produced by electrochemically etching a wire until it breaks into two pieces. This process is difficult to control because of the complexity of the associated hydrodynamic flows. We introduce transport-limited electropolishing (TLE), where the electrochemical reaction results in the formation of metal oxides and hydroxides which form a porous surface layer hindering the flow of electrolyte. The developed TLE method enables one to make long tapered needles. The taper can spread over more than 6 mm while the radius of tip curvature can be decreased down to 30 nm. These needles are strong and were successfully applied for piercing single smooth vascular muscle cells.

7.
Phys Rev Lett ; 108(9): 095001, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463645

ABSTRACT

Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of a momentum injection is found: The velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10 km·s(-1)·MA·keV(-1). When the intrinsic rotation profile is hollow, i.e., it is countercurrent in the core of the tokamak and cocurrent in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.

8.
Phys Rev Lett ; 105(10): 105005, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20867528

ABSTRACT

Using the unique capability of JET to monotonically change the amplitude of the magnetic field ripple, without modifying other relevant equilibrium conditions, the effect of the ripple on the angular rotation frequency of the plasma column was investigated under the conditions of no external momentum input. The ripple amplitude was varied from 0.08% to 1.5% in Ohmic and ion-cyclotron radio-frequency (ICRF) heated plasmas. In both cases the ripple causes counterrotation, indicating a strong torque due to nonambipolar transport of thermal ions and in the case of ICRF also fast ions.

9.
Phys Rev Lett ; 104(18): 185003, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482186

ABSTRACT

We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.

11.
Phys Rev Lett ; 95(15): 155003, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16241733

ABSTRACT

Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

13.
Phys Rev Lett ; 88(10): 105001, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11909362

ABSTRACT

The onset of a neoclassical tearing mode (NTM) depends on the existence of a large enough seed island. It is shown in the Joint European Torus that NTMs can be readily destabilized by long-period sawteeth, such as obtained by sawtooth stabilization from ion-cyclotron heating or current drive. This has important implications for burning plasma scenarios, as alpha particles strongly stabilize the sawteeth. It is also shown that, by adding heating and current drive just outside the inversion radius, sawteeth are destabilized, resulting in shorter sawtooth periods and larger beta values being obtained without NTMs.

14.
J Burn Care Rehabil ; 13(1): 147-53, 1992.
Article in English | MEDLINE | ID: mdl-1572847

ABSTRACT

Cultured epidermal autograft (CEA) can provide a valuable source of protection in patients with large amounts of skin loss as a result of thermal injury. An unanswered question is: will the long-term outcome be better if a dermis is present? We have approached the problem by attempting to retain the cryopreserved allograft dermis that is originally placed as temporary wound coverage. The retained dermis provides a substantial, uniform, well-vascularized bed that accepts the CEA. The areas that are grafted with CEA have remained durable, and cosmesis is superior to that which results from meshed grafts. We report experience with our technique in three patients with total body surface area burns of 70% to 90% who had cryopreserved meshed (1:1.5) allografts placed immediately after tangential excision of their burns. Excision and application of the allografts were complete by day 14 or 15. CEA was placed on allodermis on days 24, 28, and 35, respectively. Patients 1 and 2, who survived and returned to work, had a "take" of at least a 90% of allograft and a permanent coverage CEA take of 88% and 81%, respectively. Patient 3, who died, had an allograft take of only 20% to 30% and a CEA take of less than 10%.


Subject(s)
Burns/surgery , Epidermal Cells , Skin Transplantation/methods , Adult , Cells, Cultured , Cryopreservation , Female , Humans , Male , Middle Aged , Preoperative Care , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...