Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(23): 16295-16305, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38816788

ABSTRACT

Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.

2.
ACS Appl Mater Interfaces ; 14(13): 15165-15175, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319178

ABSTRACT

Despite the enormous attention paid to cobalt oxide materials as efficient water splitting electrocatalysts, a deep understanding of their activity discrepancy is still elusive. In this work, we showed that stabilization of the internally generated oxygen evolution reaction (OER) active phase (oxyhydroxide) is crucial for ZnCo2O4 electrocatalysts. A systematic evaluation of the bulk and nanostructured ZnCo2O4 system concomitant with nanostructured Co3O4 showed that leaching of Zn is the driving force behind the near-surface transformation to the oxyhydroxide phase. The relative contribution to this near-surface reconstruction was found to be surface-sensitive. The electrochemical observations combined with Raman and impedance spectroscopy revealed that the good catalytic activity could be attributed to the formation of the cobalt oxyhydroxide phase, which was created by the dissolution of Zn from the nanostructured surface. Moreover, this study sheds light on previous contradicting postulates regarding the discrepancy of the OER activity of ZnCo2O4. Our finding regarding the formation of the OER active phase in spinel Zn-Co oxide will motivate researchers to focus more on the near-surface reconstruction behavior of cobalt-based oxide electrocatalysts in the future.

3.
Chem Sci ; 11(24): 6248-6255, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32953020

ABSTRACT

Despite the successful debut of gold nanoclusters (Au NCs) in solar cell applications, Au NCs, compared to dyes and quantum dots, have several drawbacks, such as lower extinction coefficients. Any modulation of the physical properties of NCs can have a significant influence on the delicate control of absorbance, energy levels, and charge separation, which are essential to ensure high power conversion efficiency. To this end, we systematically alter the optoelectronic structure of Au18(SR)14 by Ag doping and explain its influence on solar cell performance. Our in-depth spectroscopic and electrochemical characterization combined with computational study reveals that the performance-dictating factors respond in different manners to the Ag doping level, and we determine that the best compromise is the incorporation of a single Ag atom into an Au NC. This new insight highlights the unique aspect of NCs-susceptibility to atomic level doping-and helps establish a new design principle for efficient NC-based solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...