Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(3): e0172719, 2017.
Article in English | MEDLINE | ID: mdl-28253300

ABSTRACT

Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxß, PoxNeuro) was confirmed and the lophotrochozoan Paxß subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures.


Subject(s)
Cephalopoda/genetics , Paired Box Transcription Factors/genetics , Animals , Sequence Alignment
2.
Article in English | MEDLINE | ID: mdl-25177313

ABSTRACT

The ability to respond to hyperosmotic stress is one of the numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP) family were shown to participate in osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants. First, we demonstrated the response of Arabidopsis thaliana cultured cells to a metazoan FLP (FLRF). We found that A. thaliana express genes that display typical FLP repeated sequences, which end in RF and are surrounded by K or R, which is typical of cleavage sites and suggests bioactivity; however, the terminal G, allowing an amidation process in metazoan, seems to be replaced by W. Using synthetic peptides, we showed that amidation appears unnecessary to bioactivity in A. thaliana, and we provide evidence that these putative FLPs could be involved in physiological processes related to hyperosmotic stress responses in plants, urging further studies on this topic.

3.
Gene ; 498(2): 203-11, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22548232

ABSTRACT

New molecular resources regarding the so-called "non-standard models" in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S. officinalis, yielding 19,780 non-redundant sequences (NRS). Around 75% of these sequences have no homologs in existing available databases. This set is the first developmental ESTs library in cephalopods. By exploring these NRS for tubulin, a generic protein family, and reflectin, a cephalopod specific protein family,we point out for both families a striking molecular diversity in S. officinalis.


Subject(s)
Expressed Sequence Tags , Sepia/genetics , Tubulin/genetics , Actins/genetics , Amino Acid Sequence , Animals , Embryo, Nonmammalian/physiology , Female , Gene Library , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sepia/embryology
4.
Gene Expr Patterns ; 9(7): 461-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19683074

ABSTRACT

Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.


Subject(s)
Embryo, Nonmammalian/metabolism , Eye Proteins/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Sepia/embryology , Animals , Cephalopoda/embryology , Embryonic Development , Eye Proteins/metabolism , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Morphogenesis , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Sepia/genetics , Sepia/metabolism
5.
Dev Dyn ; 237(7): 1944-51, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18570246

ABSTRACT

Cephalopods are emerging as new developmental models. These lophotrochozoans exhibit numerous morphological peculiarities among molluscs, not only regarding their nervous system but also regarding their circulatory system, which is closed and includes three hearts. However, the molecular control of cardiac myogenesis in lophotrochozoans is largely unknown. In other groups, cardiac development depends on numerous different genes, among them NK4 seems to have a well-conserved function throughout evolution. In this study, we assessed the expression pattern of SoNK4, the Sepia officinalis NK4 homologue, during Sepia officinalis development by whole-mount in situ hybridization. SoNK4 expression begins before morphogenesis, is not restricted to prospective cardiac muscles but above all concerns mesodermal structures potentially rich in muscles such as arms and mantle. These results suggest an important role of SoNK4 in locomotory (somatic) muscles development of Sepia officinalis, and thus a new role for NK4.


Subject(s)
Hepatocyte Growth Factor/physiology , Muscle Development/physiology , Sepia/embryology , Animals , Gene Expression Regulation, Developmental , Hepatocyte Growth Factor/genetics , Muscle Development/genetics , Sepia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...