Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301334, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528378

ABSTRACT

The 2D materials exhibit numerous technological applications, but their scalable production is a core challenge. Herein, ball milling exfoliation in supercritical carbon dioxide (scCO2) and polystyrene (PS) is demonstrated to completely exfoliate hexagonal boron nitride nanosheets (BNNSs), graphene, molybdenum disulfide (MoS2), and tungsten disulfide (WS2). The exfoliation yield of 91%, 93%, 92%, and 92% and average aspect ratios of 743, 565, 564, and 502 for BNNSs, graphene, MoS2, and WS2, respectively, are achieved. Integrating exfoliated BNNSS in the polystyrene matrix, 3768 % thermal conductivity in the axial direction and 316% in the cross-plane direction at 12 wt.% loading is increased. Also, the in-plane and cross-plane electrical conductivity of 6.3 × 10-4 S m-1 and 6.6 × 10-3 S m-1, respectively, and the electromagnetic interference (EMI) of 63.3 dB is achieved by exfoliated graphene nanosheets based composite. High thermal and electrical conductivities and EMI shielding are attributed to the high aspect ratio and ultrathin morphology of the exfoliated nanosheets, which exert high charge mobility and form better the percolation network in the composite films due to their high surface area. The process demonstrate herein can produce substantial quantities of diverse 2D nanosheets for widespread commercial utilization.

2.
Langmuir ; 38(27): 8222-8231, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35763677

ABSTRACT

It is difficult to disperse graphene flakes well in an aqueous solution while maintaining conductivity due to its high hydrophobicity. Herein, we demonstrated that a well-dispersed state of graphene in an aqueous solution was realized by using reduced graphene oxide (rGO) with a suitable content of oxygen-functional groups. A rGO-dispersed graphene (rGO/G) film was fabricated from the graphene dispersion with good conductivity by using rGO with a C/O ratio of 2.48 as the surfactant. Also, the prepared rGO/G aerogel has a broad prospect. Density functional theory calculation revealed that the strong electrostatic repulsion, which was more potent than the van der Waals force and the π-π interaction, was the primary driving force promoting the dispersibility of graphene in an aqueous solution. Furthermore, the repulsion of the rGO/G dispersion decreased with the reduction of the oxygen-functional groups of rGO. Therefore, applying rGO with an appropriate content of oxygen-functional groups is an alternative option to improve the dispersibility of graphene in an aqueous medium while maintaining its original properties, from which many potential applications could be expected.

3.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268989

ABSTRACT

A two-stage sequential pretreatment including caustic mercerization (CM) and liquid ammonia (LA) treatment was applied to investigate the influence on dyeing performance and handle of knit cotton fabric, and the relationship between dye size and dyeing properties. Various techniques were applied to characterize all the treated fabrics. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses of the treated fabrics confirmed that both sequential treatments decreased the crystallinity of cotton fabric more than only the CM or LA treatment. The pattern of cellulose I was transferred to a mixed configuration of cellulose II and cellulose III after the CM/LA or LA/CM treatment. Thermal performances measured by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) techniques showed that the thermal stability of the treated cotton only marginally decreased. The wicking height increased after the sequential CM/LA treatment, indicating that the hydrophilicity of the fabric increased. The dye absorption and color uniformity were better for the reactive dye with a smaller molecular weight (Reactive Red 2) compared with the one with a larger molecular weight (Reactive Red 195). The total dye fixation efficiency (T%) increased to 72.93% and 73.24% for Reactive Red 2 dyeings of CM/LA- and LA/CM-cotton fabric from 46.75% of the untreated fabric, respectively; the T% increased to 65.33% and 72.27% for Reactive Red 195 dyeings of CM/LA- and LA/CM-cotton fabric from 35.17% of the untreated fabric, respectively. The colorfastness and dye exhaustion and fixation percentages of the samples were enhanced after the treatments. Furthermore, compared to the single CM or LA treatment, the softness handle properties were further improved after the fabrics were sequentially treated by CM/LA. The developed pre-treatment of CM/LA can be used in the textile industry to promote the dyeability, handle, and mechanical properties of knit cotton fabrics.

4.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329544

ABSTRACT

The dyeing process commonly deteriorates the luster of pre-mercerized cotton fabric, so post-mercerization processes are regularly applied to compensate for this. Herein, the influence of combining pre-mercerization with CS (caustic solution) or LA (liquid ammonia) and post-mercerization with CS or LA on the morphological structure, dyeing performance, tensile strength, and stiffness of woven cotton fabric was investigated. The crystallinity index values greatly decreased from 73.12 to 51.25, 58.73, 38.42, and 40.90% after the combined mercerization processes of LA-LA, CS-CS, LA-CS, and CS-LA, respectively. Additionally, the CS-LA- and LA-CS-treated samples exhibited a mixture of cellulose II and cellulose III allomorphs. The combined mercerization processing of cotton fabric resulted in slightly worse thermal stability. The LA and CS pre-mercerization processes increased the dye exhaustion, although the former decreased the dye fixation rate while the latter increased it by 4% for both dyes. The color strength of the dyed cotton fabric increased after both post-mercerization processes. Moreover, the fabric stiffness and mechanical properties showed an increasing trend due to the combined mercerization efforts.

5.
ACS Omega ; 6(17): 11427-11435, 2021 May 04.
Article in English | MEDLINE | ID: mdl-34056298

ABSTRACT

A novel structured composite of polyaniline/pristine graphene (PG)-bacterial cellulose (BC) as electrodes fabricated in a facile approach and the foldable all-solid-state supercapacitors with high performance were reported in this work. The shear mixed PG-BC substrate was fixed with in situ polymerized polyaniline as a solder, improving its charge carrier transfer rate and cycling stability, while hydrophilic BC greatly improved the ion diffusion rate of the electrolyte. The as-prepared composites possessed a high areal capacitance of 3.65 F/cm2 at 5 mA/cm2, and the electrode was able to be bent into different shapes without fracture. The assembled all-solid-state supercapacitor was flexible and exhibited excellent areal capacitance of 1389 mF/cm2, energy density of 9.80 mWh/cm3, and 89.8% retention of its initial capacitance after 5000 cycles at a current density of 2 mA/cm2. The composite is expected to have applications in making flexible supercapacitors applied in wearable devices.

6.
Materials (Basel) ; 12(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801281

ABSTRACT

This work reports the modification of Polyacrylonitrile (PAN) fibers by coupling to thiosemicarbazones to achieve the biological activity for the applications in the food product packaging. After modification, seven thiosemicarbazone compounds were synthesized. The as-synthesized thiosemicarbazone compounds were bonded to PAN fibers via covalent coupling, which was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The mean graft efficiency of the compounds was about 1.92%, and the antibacterial efficiency was 88.6% and 45.1% against Staphylococcus aureus (S-aureus) bacteria. All the seven thiosemicarbazone compounds exerted excellent tyrosinase activity, low cytotoxicity, excellent metal ion chelation ability, and anti-bacterial behavior against both gram-positive and negative bacteria. The mechanical properties of the fibers have been maintained without significant damage after the chemical modification. The break strength test and elongation at the break test were done to measure the fracture strength of the modified fibers. Overall, the promising properties of the modified PAN fibers show potential applications in food packaging materials for fruits and vegetables, which require long-term anti-browning effects during their transportation and storage.

7.
Ultrason Sonochem ; 48: 96-102, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080591

ABSTRACT

In this paper, we demonstrated a simple and cost-effective method to produce graphene from graphite in ethanol using ultrasound assisted with curcumin. The influence of curcumin concentration, starting graphite amount, sonication power, and sonication time on the graphene concentration was studied schematically. The π-π interaction between curcumin and graphene, being confirmed by FTIR spectrum, facilitate the exfoliation of the graphite into graphene. The concentration of the graphene in the ethanol reached up to 1.44 mg mL-1 and the exfoliated suspension was relatively stable. The content of monolayer, bilayer, and multilayer in the exfoliated graphene suspension were 21%, 37%, and 42%, respectively. The as-prepared graphene sheets were free-defect. This novel approach may not only enable to exfoliate the graphite into graphene but also to make the graphene-curcumin hybrid which might find applications in pharmaceutical industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...