Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Genome Res ; 34(3): 426-440, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38621828

ABSTRACT

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Subject(s)
Genome , Urochordata , Animals , Urochordata/genetics , Urochordata/classification , Evolution, Molecular , Female , Phylogeny , Male , Synteny
2.
Comput Struct Biotechnol J ; 23: 264-277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38173877

ABSTRACT

Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.

3.
Plant Biotechnol J ; 20(7): 1373-1386, 2022 07.
Article in English | MEDLINE | ID: mdl-35338551

ABSTRACT

The first gapless, telomere-to-telomere (T2T) sequence assemblies of plant chromosomes were reported recently. However, sequence assemblies of most plant genomes remain fragmented. Only recent breakthroughs in accurate long-read sequencing have made it possible to achieve highly contiguous sequence assemblies with a few tens of contigs per chromosome, that is a number small enough to allow for a systematic inquiry into the causes of the remaining sequence gaps and the approaches and resources needed to close them. Here, we analyse sequence gaps in the current reference genome sequence of barley cv. Morex (MorexV3). Optical map and sequence raw data, complemented by ChIP-seq data for centromeric histone variant CENH3, were used to estimate the abundance of centromeric, ribosomal DNA, and subtelomeric repeats in the barley genome. These estimates were compared with copy numbers in the MorexV3 pseudomolecule sequence. We found that almost all centromeric sequences and 45S ribosomal DNA repeat arrays were absent from the MorexV3 pseudomolecules and that the majority of sequence gaps can be attributed to assembly breakdown in long stretches of satellite repeats. However, missing sequences cannot fully account for the difference between assembly size and flow cytometric genome size estimates. We discuss the prospects of gap closure with ultra-long sequence reads.


Subject(s)
Hordeum , Chromosomes, Plant/genetics , DNA, Ribosomal/genetics , Genome, Plant/genetics , Hordeum/genetics , Sequence Analysis, DNA , Telomere/genetics
4.
Plant Genome ; 15(1): e20191, 2022 03.
Article in English | MEDLINE | ID: mdl-35092350

ABSTRACT

Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.


Subject(s)
Bread , Triticum , DNA, Ribosomal/genetics , Polyploidy , RNA, Ribosomal/genetics , Triticum/genetics
5.
BMC Genomics ; 20(1): 908, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783727

ABSTRACT

BACKGROUND: In phylogenetically diverse organisms, the 5' ends of a subset of mRNAs are trans-spliced with a spliced leader (SL) RNA. The functions of SL trans-splicing, however, remain largely enigmatic. RESULTS: We quantified translation genome-wide in the marine chordate, Oikopleura dioica, under inhibition of mTOR, a central growth regulator. Translation of trans-spliced TOP mRNAs was suppressed, consistent with a role of the SL sequence in nutrient-dependent translational control of growth-related mRNAs. Under crowded, nutrient-limiting conditions, O. dioica continued to filter-feed, but arrested growth until favorable conditions returned. Upon release from unfavorable conditions, initial recovery was independent of nutrient-responsive, trans-spliced genes, suggesting animal density sensing as a first trigger for resumption of development. CONCLUSION: Our results are consistent with a proposed role of trans-splicing in the coordinated translational down-regulation of nutrient-responsive genes under growth-limiting conditions.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Trans-Splicing , Transcription, Genetic , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Female , Mammals/genetics , Nucleotide Motifs , Oocytes/metabolism , RNA, Messenger/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Urochordata/genetics
6.
BMC Genomics ; 19(1): 164, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29482522

ABSTRACT

BACKGROUND: Development is largely driven by transitions between transcriptional programs. The initiation of transcription at appropriate sites in the genome is a key component of this and yet few rules governing selection are known. Here, we used cap analysis of gene expression (CAGE) to generate bp-resolution maps of transcription start sites (TSSs) across the genome of Oikopleura dioica, a member of the closest living relatives to vertebrates. RESULTS: Our TSS maps revealed promoter features in common with vertebrates, as well as striking differences, and uncovered key roles for core promoter elements in the regulation of development. During spermatogenesis there is a genome-wide shift in mode of transcription initiation characterized by a novel core promoter element. This element was associated with > 70% of male-specific transcription, including the use of cryptic internal promoters within operons. In many cases this led to the exclusion of trans-splice sites, revealing a novel mechanism for regulating which mRNAs receive the spliced leader. Binding of the cell cycle regulator, E2F1, is enriched at the TSS of maternal genes in endocycling nurse nuclei. In addition, maternal promoters lack the TATA-like element found in zebrafish and have broad, rather than sharp, architectures with ordered nucleosomes. Promoters of ribosomal protein genes lack the highly conserved TCT initiator. We also report an association between DNA methylation on transcribed gene bodies and the TATA-box. CONCLUSIONS: Our results reveal that distinct functional promoter classes and overlapping promoter codes are present in protochordates like in vertebrates, but show extraordinary lineage-specific innovations. Furthermore, we uncover a genome-wide, developmental stage-specific shift in the mode of TSS selection. Our results provide a rich resource for the study of promoter structure and evolution in Metazoa.


Subject(s)
Chordata/genetics , Gene Expression Regulation, Developmental , Transcription Initiation Site , Animals , Chordata/metabolism , DNA Methylation , Genome , Nucleosomes/metabolism , Promoter Regions, Genetic , Spermatogenesis , TATA Box , Transcription, Genetic
7.
Article in English | MEDLINE | ID: mdl-28115992

ABSTRACT

BACKGROUND: In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes. RESULTS: Across the 70 MB Oikopleura dioica genome, we profiled 19 histone modifications, and RNA polymerase II, CTCF and p300 occupancies, to define chromatin states within two homogeneous tissues with distinct cell cycle modes: ovarian endocycling nurse nuclei and mitotically proliferating germ nuclei in testes. Nurse nuclei had active chromatin states similar to other metazoan epigenomes, with large domains of operon-associated transcription, a general lack of heterochromatin, and a possible role of Polycomb PRC2 in dosage compensation. Testis chromatin states reflected transcriptional activity linked to spermatogenesis and epigenetic marks that have been associated with establishment of transgenerational inheritance in other organisms. We also uncovered an unusual chromatin state specific to the Y-chromosome, which combined active and heterochromatic histone modifications on specific transposable elements classes, perhaps involved in regulating their activity. CONCLUSIONS: Compacted regulatory space in this tunicate genome is accompanied by reduced heterochromatin and chromatin state domain widths. Enhancers, promoters and protein-coding genes have conserved epigenomic features, with adaptations to the organization of a proportion of genes in operon units. We further identified features specific to sex chromosomes, cell cycle modes, germline identity and dosage compensation, and unusual combinations of histone PTMs with opposing consensus functions.


Subject(s)
Chromatin/metabolism , Genome , Urochordata/genetics , Animals , Chromatin/genetics , Chromatin Immunoprecipitation , DNA Methylation , DNA Transposable Elements/genetics , Female , Histones/chemistry , Histones/genetics , Histones/metabolism , Male , Ovary/metabolism , Promoter Regions, Genetic , Protein Processing, Post-Translational , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Testis/metabolism
9.
Neural Dev ; 7: 32, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22989074

ABSTRACT

BACKGROUND: Although the mechanisms underlying brain patterning and regionalization are very much conserved, the morphology of different brain regions is extraordinarily variable across vertebrate phylogeny. This is especially manifest in the telencephalon, where the most dramatic variation is seen between ray-finned fish, which have an everted telencephalon, and all other vertebrates, which have an evaginated telencephalon. The mechanisms that generate these distinct morphologies are not well understood. RESULTS: Here we study the morphogenesis of the zebrafish telencephalon from 12 hours post fertilization (hpf) to 5 days post fertilization (dpf) by analyzing forebrain ventricle formation, evolving patterns of gene and transgene expression, neuronal organization, and fate mapping. Our results highlight two key events in telencephalon morphogenesis. First, the formation of a deep ventricular recess between telencephalon and diencephalon, the anterior intraencephalic sulcus (AIS), effectively creates a posterior ventricular wall to the telencephalic lobes. This process displaces the most posterior neuroepithelial territory of the telencephalon laterally. Second, as telencephalic growth and neurogenesis proceed between days 2 and 5 of development, the pallial region of the posterior ventricular wall of the telencephalon bulges into the dorsal aspect of the AIS. This brings the ventricular zone (VZ) into close apposition with the roof of the AIS to generate a narrow ventricular space and the thin tela choroidea (tc). As the pallial VZ expands, the tc also expands over the upper surface of the telencephalon. During this period, the major axis of growth and extension of the pallial VZ is along the anteroposterior axis. This second step effectively generates an everted telencephalon by 5 dpf. CONCLUSION: Our description of telencephalic morphogenesis challenges the conventional model that eversion is simply due to a laterally directed outfolding of the telencephalic neuroepithelium. This may have significant bearing on understanding the eventual organization of the adult fish telencephalon.


Subject(s)
Morphogenesis/physiology , Neurons/physiology , Telencephalon , Zebrafish/anatomy & histology , Animals , Animals, Genetically Modified , Body Patterning/genetics , Body Patterning/physiology , Brain Mapping , Bromodeoxyuridine/metabolism , Embryo, Nonmammalian , Green Fluorescent Proteins/genetics , Microscopy, Confocal , Morphogenesis/genetics , Neural Pathways/embryology , Neural Pathways/growth & development , Neural Pathways/metabolism , Neuropil/physiology , RNA, Messenger/administration & dosage , Telencephalon/cytology , Telencephalon/embryology , Telencephalon/growth & development , Time Factors , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish Proteins/genetics
10.
Pigment Cell Melanoma Res ; 25(1): 28-36, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21883983

ABSTRACT

Greying with age in horses is an autosomal dominant trait, characterized by hair greying, high incidence of melanoma and vitiligo-like depigmentation. Previous studies have revealed that the causative mutation for this phenotype is a 4.6-kb intronic duplication in STX17 (Syntaxin 17). By using reporter constructs in transgenic zebrafish, we show that a construct containing two copies of the duplicated sequence acts as a strong enhancer in neural crest cells and has subsequent melanophore-specific activity during zebrafish embryonic development whereas a single copy of the duplicated sequence acts as a weak enhancer, consistent with the phenotypic manifestation of the mutation in horses. We further used luciferase assays to investigate regulatory regions in the duplication, to reveal tissue-specific activities of these elements. One region upregulated the reporter gene expression in a melanocyte-specific manner and contained two microphthalmia-associated transcription factor (MITF) binding sites, essential for the activity. Microphthalmia-associated transcription factor regulates melanocyte development, and these binding sites are outstanding candidates for mediating the melanocyte-specific activity of the element. These results provide strong support for the causative nature of the duplication and constitute an explanation for the melanocyte-specific effects of the Grey allele.


Subject(s)
Enhancer Elements, Genetic , Gene Duplication , Hair Color/genetics , Horse Diseases/genetics , Horses/genetics , Introns/genetics , Melanocytes/metabolism , Melanoma/veterinary , Microphthalmia-Associated Transcription Factor/metabolism , Qa-SNARE Proteins/genetics , Skin Neoplasms/veterinary , Aging/genetics , Animals , Animals, Genetically Modified , Binding Sites , Gene Dosage , Gene Expression Regulation, Developmental , Genes, Dominant , Genes, Reporter , Humans , Mammals , Melanoma/genetics , Melanophores/metabolism , Neural Crest/cytology , Phenotype , Qa-SNARE Proteins/physiology , Skin Neoplasms/genetics , Species Specificity , Zebrafish
11.
Proc Natl Acad Sci U S A ; 107(2): 775-80, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20080751

ABSTRACT

Genome-wide association studies identified noncoding SNPs associated with type 2 diabetes and obesity in linkage disequilibrium (LD) blocks encompassing HHEX-IDE and introns of CDKAL1 and FTO [Sladek R, et al. (2007) Nature 445:881-885; Steinthorsdottir V, et al. (2007) Nat. Genet 39:770-775; Frayling TM, et al. (2007) Science 316:889-894]. We show that these LD blocks contain highly conserved noncoding elements and overlap with the genomic regulatory blocks of the transcription factor genes HHEX, SOX4, and IRX3. We report that human highly conserved noncoding elements in LD with the risk SNPs drive expression in endoderm or pancreas in transgenic mice and zebrafish. Both HHEX and SOX4 have recently been implicated in pancreas development and the regulation of insulin secretion, but IRX3 had no prior association with pancreatic function or development. Knockdown of its orthologue in zebrafish, irx3a, increased the number of pancreatic ghrelin-producing epsilon cells and decreased the number of insulin-producing beta-cells and glucagon-producing alpha-cells, thereby suggesting a direct link of pancreatic IRX3 function to both obesity and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Expression Regulation , Homeodomain Proteins/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , SOXC Transcription Factors/genetics , Transcription Factors/genetics , Animals , Conserved Sequence , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Genes, Reporter , Genome-Wide Association Study , Homeostasis , Humans , Insulin/metabolism , Insulin Secretion , Mice , Mice, Transgenic/genetics , Pancreas/physiology , Risk Factors , Zebrafish/genetics
12.
Mol Genet Genomics ; 283(2): 171-84, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20039180

ABSTRACT

We used the classic example of the duplicated zebrafish sox11a and -b loci to test the duplication, degeneration, complementation (DDC) model of genome evolution through whole genome duplication. While recent reports have demonstrated sub-partitioning of regulatory sequences in duplicated regions, a comparison of the regulatory capabilities of extant regulatory sequences derived from ancient ancestral elements has been scarce. Consistent with the DDC model, we find that ancestral regulatory elements distributed over several hundred kb were lost in either one or the other zebrafish duplicate, leading to subpartitioning. However, regulatory sequences kept as duplicates near both sox11 co-orthologs diverged in sequence from each other and from human elements and in the regulatory patterns they drive in transgenic zebrafish. Evolutionary analysis of the loci suggested that both zebrafish protein coding sox11 orthologs have been maintained by purifying selection, and have evolved at comparable rates, indicative of non-diverged protein functions. The duplicated regulatory elements, conversely, evolved with different divergence rates and degrees of subfunctionalization. These data show that regulatory evolution of gene expression patterns occurred both through differential loss as well as through regulatory sequence evolution in zebrafish versus human genomes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Duplication , Gene Expression Regulation , SOX Transcription Factors/genetics , SOXC Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified/genetics , Evolution, Molecular , Genetic Variation , Humans , Zebrafish/embryology
13.
Nucleic Acids Res ; 38(4): 1071-85, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19969543

ABSTRACT

Using a comparative genomics approach to reconstruct the fate of genomic regulatory blocks (GRBs) and identify exonic remnants that have survived the disappearance of their host genes after whole-genome duplication (WGD) in teleosts, we discover a set of 38 candidate cis-regulatory coding exons (RCEs) with predicted target genes. These elements demonstrate evolutionary separation of overlapping protein-coding and regulatory information after WGD in teleosts. We present evidence that the corresponding mammalian exons are still under both coding and non-coding selection pressure, are more conserved than other protein coding exons in the host gene and several control sets, and share key characteristics with highly conserved non-coding elements in the same regions. Their dual function is corroborated by existing experimental data. Additionally, we show examples of human exon remnants stemming from the vertebrate 2R WGD. Our findings suggest that long-range cis-regulatory inputs for developmental genes are not limited to non-coding regions, but can also overlap the coding sequence of unrelated genes. Thus, exonic regulatory elements in GRBs might be functionally equivalent to those in non-coding regions, calling for a re-evaluation of the sequence space in which to look for long-range regulatory elements and experimentally test their activity.


Subject(s)
Enhancer Elements, Genetic , Evolution, Molecular , Exons , Genome , Animals , Binding Sites , Chromatin/chemistry , Gene Duplication , Genetic Code , Genomics , Humans , Mice , Protein Structure, Tertiary , Proteins/genetics , Transcription Factors/metabolism , Zebrafish/genetics
14.
Brief Funct Genomic Proteomic ; 8(4): 333-42, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19561171

ABSTRACT

Despite a recent explosion in the production of vertebrate genome sequence data and large-scale efforts to completely annotate the human genome, we still have scant knowledge of the principles that built vertebrate genomes in evolution, and of genome architecture and its functional significance. We review approaches using bioinformatics, zebrafish transgenesis, and recent findings in the molecular basis of gene regulation and tie these in with mechanisms for the maintenance of long-range conserved synteny across all vertebrate genomes. Specifically, we discuss the recently discovered genomic regulatory blocks which we argue are principal units of vertebrate genome evolution and serve as the foundations onto which evolutionary innovations are built through sequence evolution and insertion of new cis-regulatory elements. We subsequently discuss how these arrangements relate to common human heritable diseases and their significance in disease causality.


Subject(s)
Disease/genetics , Genome/genetics , Regulatory Sequences, Nucleic Acid/genetics , Vertebrates/genetics , Animals , DNA, Intergenic/genetics , Humans , Synteny/genetics
15.
Dev Biol ; 327(2): 526-40, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19073165

ABSTRACT

Pan-vertebrate developmental cis-regulatory elements are discernible as highly conserved noncoding elements (HCNEs) and are often dispersed over large areas around the pleiotropic genes whose expression they control. On the loci of two developmental transcription factor genes, SOX3 and PAX6, we demonstrate that HCNEs conserved between human and zebrafish can be systematically and reliably tested for their regulatory function in multiple stable transgenes in zebrafish, and their genomic reach estimated with confidence using synteny conservation and HCNE density along these loci. HCNEs of both human and zebrafish function as specific developmental enhancers in zebrafish. We show that human HCNEs result in expression patterns in zebrafish equivalent to those in mouse, establishing zebrafish as a suitable model for large-scale testing of human developmental enhancers. Orthologous human and zebrafish enhancers underwent functional evolution within their sequence and often directed related but non-identical expression patterns. Despite an evolutionary distance of 450 million years, one pax6 HCNE drove expression in identical areas when comparing zebrafish vs. human HCNEs. HCNEs from the same area often drive overlapping patterns, suggesting that multiple regulatory inputs are required to achieve robust and precise complex expression patterns exhibited by developmental genes.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Regulatory Elements, Transcriptional , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , Binding Sites , Eye Proteins/genetics , Homeodomain Proteins/genetics , Humans , Mice , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , SOXB1 Transcription Factors/genetics , Transgenes , Zebrafish/anatomy & histology , Zebrafish Proteins/genetics
16.
Genome Res ; 17(5): 545-55, 2007 May.
Article in English | MEDLINE | ID: mdl-17387144

ABSTRACT

We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs.


Subject(s)
Conserved Sequence , Gene Expression Regulation/physiology , Synteny , Zebrafish/genetics , Animals , Chickens/genetics , Evolution, Molecular , Gene Duplication , Genetic Linkage , Genome, Human , Humans , Tetraodontiformes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...