Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 64(13): 40, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37878301

ABSTRACT

Purpose: Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. Methods: To study how gene expression is altered in focal areas of pathology, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We performed differential expression to identify genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Results: Within the area of neovascularization, endothelial cells demonstrated increased expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we investigated regional gene expression patterns within the macular neural retina and between the macular and peripheral choroid. Conclusions: Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Humans , Animals , Mice , Transcriptome , Endothelial Cells , Choroidal Neovascularization/genetics , Retina , Macular Degeneration/genetics
2.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37398429

ABSTRACT

Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process. In this study, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We identified genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes. Within the area of neovascularization, endothelial cells were predicted to increase expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we also investigated spatial gene expression patterns within the macular neural retina and between the macular and peripheral choroid. We recapitulated previously described regional-specific gene expression patterns across both tissues. Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.

3.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36916505

ABSTRACT

Agro-ecosystems provide environments that are conducive for rapid evolution and dispersal of plant pathogens. Previous studies have demonstrated that hybridization of crop pathogens can give rise to new lineages with altered virulence profiles. Currently, little is known about either the genetics of fungal pathogen hybridization or the mechanisms that may prevent hybridization between related species. The fungus Pyrenophora teres is a global pathogen of barley. The pathogenic fungus P. teres exists as two distinct lineages P. teres f. teres and P. teres f. maculata (Ptt and Ptm, respectively), which both infect barley but produce very distinct lesions and rarely interbreed. Interestingly, Ptt and Ptm can, by experimental mating, produce viable progenies. Here, we addressed the underlying genetics of reproductive barriers of P. teres. We hypothesize that Ptt and Ptm diverged in the past, possibly by adapting to distinct hosts, and only more recently colonized the same host in agricultural fields. Using experimental mating and in planta phenotyping in barley cultivars susceptible to both P. teres forms, we demonstrate that hybrids produce mixed infection phenotypes but overall show inferior pathogenic fitness relative to the pure parents. Based on analyses of 104 hybrid genomes, we identify signatures of negative epistasis between parental alleles at distinct loci (Dobzhansky-Müller incompatibilities). Most DMI regions are not involved in virulence but certain genes are predicted or known to play a role in virulence. These results potentially suggest that divergent niche adaptation-albeit in the same host plant-contributes to speciation in P. teres.


Subject(s)
Ecosystem , Hordeum , Phenotype , Hordeum/genetics , Hordeum/microbiology , Virulence/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...