Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2041-2057, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38173420

ABSTRACT

Cancer is the second leading cause of death attributed to disease worldwide. Current standard detection methods often rely on a single cancer marker, which can lead to inaccurate results, including false negatives, and an inability to detect multiple cancers simultaneously. Here, we developed a multiplex method that can effectively detect and classify surface proteins associated with three distinct types of breast cancer by utilizing gap-enhanced Raman scattering nanotags and machine learning algorithm. We synthesized anisotropic magnetic core-gold shell gap-enhanced Raman nanotags incorporating three different Raman reporters. These multicolor Raman nanotags were employed to distinguish specific surface protein markers in breast cancer cells. The acquired signals were deconvoluted and analyzed using classical least-squares regression to generate a surface protein profile and characterize the breast cancer cells. Furthermore, computational data obtained via finite-difference time-domain and discrete dipole approximation showed the amplification of the electric fields within the gap region due to plasmonic coupling between the two gold layers. Finally, a random forest classifier achieved an impressive classification and profiling accuracy of 93.9%, enabling effective distinguishing between the three different types of breast cancer cell lines in a mixed solution. With the combination of immunomagnetic multiplex target specificity and separation, gap-enhancement Raman nanotags, and machine learning, our method provides an accurate and integrated platform to profile and classify different cancer cells, giving implications for identification of the origin of circulating tumor cells in the blood system.


Subject(s)
Breast Neoplasms , Metal Nanoparticles , Humans , Female , Spectrum Analysis, Raman/methods , Breast Neoplasms/diagnosis , Gold , Algorithms , Membrane Proteins , Magnetic Phenomena
2.
Anal Chem ; 95(27): 10279-10288, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37382879

ABSTRACT

Cascading optical processes involve sequential photon-matter interactions triggered by the same individual excitation photons. Parts I and II of this series explored cascading optical processes in scattering-only solutions (Part I) and solutions with light scatterers and absorbers but no emitters (Part II). The current work (Part III) focuses on the effects of cascading optical processes on spectroscopic measurements of fluorescent samples. Four types of samples were examined: (1) eosin Y (EOY), an absorber and emitter; (2) EOY mixed with plain polystyrene nanoparticles (PSNPs), which are pure scatterers; (3) EOY mixed with dyed PSNPs, which scatter and absorb light but do not emit; and (4) fluorescent PSNPs that are simultaneous light absorbers, scatterers, and emitters. Interference from both forward scattered and emitted photons can cause nonlinearity and spectral distortion in UV-vis extinction measurements. Sample absorption by nonfluorogenic chromophores reduces fluorescence intensity, while the effect of scattering on fluorophore fluorescence is complicated by several competing factors. A revised first-principles model is developed for correlating the experimental fluorescence intensity with the sample absorbance in solutions containing both scatterers and absorbers. The optical properties of fluorescent PSNPs of three different sizes were systematically investigated by using integrating-sphere-assisted resonance synchronous spectroscopy, linearly polarized resonance synchronous spectroscopy, UV-vis, and fluorescence spectroscopy. The insights and methodology provided in this work should help improve the reliability of spectroscopic analyses of fluorescent samples, where the interplay among light absorption, scattering, and emission can be complex.

3.
Anal Chem ; 95(9): 4461-4469, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36787490

ABSTRACT

In Part I of the three companion articles, we reported the effects of light scattering on experimental quantification of scattering extinction, intensity, and depolarization in solutions that contain only scatterers with no significant absorption and photoluminescence activities. The present work (Part II) studies the effects of light scattering and absorption on a series of optical spectroscopic measurements done on samples that contain both absorbers and scatterers, but not emitters. The experimental UV-vis spectrum is the sum of the sample absorption and scattering extinction spectra. However, the upper limit of the experimental Beer's-law-abiding extinction can be limited prematurely by the interference of forward scattered light. Light absorption reduces not only the sample scattering intensity but also the scattering depolarization. The impact of scattering on sample light absorption is complicated, depending on whether the absorption of scattered light is taken into consideration. Scattering reduces light absorption along the optical path length from the excitation source to the UV-vis detector. However, the absorption of the scattered light can be adequate to compensate the reduced light absorption along such optical path, making the impacts of light scattering on the sample total light absorption negligibly small (<10%). The latter finding constitutes a critical validation of the integrating-sphere-assisted resonance synchronous spectroscopic method for experimental quantification of absorption and scattering contribution to the sample UV-vis extinction spectra. The techniques and general guidelines provided in this work should help improve the reliability of optical spectroscopic characterization of nanoscale or larger materials, many of which are simultaneous absorbers and scatterers. The insights from this work are foundational for Part III of this series of work, which is on the cascading optical processes on spectroscopic measurements of fluorescent samples.

4.
Anal Chem ; 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36598877

ABSTRACT

Light scattering is a universal matter property that is especially prominent in nanoscale or larger materials. However, the effects of scattering-based cascading optical processes on experimental quantification of sample absorption, scattering, and emission intensities, as well as scattering and emission depolarization, have not been adequately addressed. Using a series of polystyrene nanoparticles (PSNPs) of different sizes as model analytes, we present a computational and experimental study on the effects of cascading light scattering on experimental quantification of NP scattering activities (scattering cross-section or molar coefficient), intensity, and depolarization. Part II and Part III of this series of companion articles explore the effects of cascading optical processes on sample absorption and fluorescence measurements, respectively. A general theoretical model is developed on how forward scattered light complicates the general applicability of Beer's law to the experimental UV-vis spectrum of scattering samples. The correlation between the scattering intensity and PSNP concentration is highly complicated with no robust linearity even when the scatterers' concentration is very low. Such complexity arises from the combination of concentration-dependence of light scattering depolarization and the scattering inner filter effects (IFEs). Scattering depolarization increases with the PSNP scattering extinction (thereby, its concentration) but can never reach unity (isotropic) due to the polarization dependence of the scattering IFE. The insights from this study are important for understanding the strengths and limitations of various scattering-based techniques for material characterization including nanoparticle quantification. They are also foundational for quantitative mechanistic understanding on the effects of light scattering on sample absorption and fluorescence measurements.

5.
Anal Chem ; 94(19): 7123-7131, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35507917

ABSTRACT

The popular textbook and literature model I(λx,λm) = K(λx,λm)(1-10-Ax) or its variants for correlating the sample absorption and fluorescence often fails even for the simplest samples where the fluorophore is the only light absorber. Reported is a first-principle model I(λx,λm) = K(λx,λm)Ax,f10-(Ax,sdx+Am,sdm) for correlating the sample fluorescence measured with a conventional spectrofluorometer and its UV-vis absorbance quantified with a conventional UV-vis spectrophotometer. This model can be simplified or expanded for a variety of fluorescence analyses. First, it enables curve-fitting fluorescence intensity as a function of the fluorophore or sample absorbance over a sample concentration range impossible with existing models. Second, it provides the theoretical foundation for an inner-filter-effect (IFE)-correction method developed earlier and explains mathematically the linearity between the IFE-corrected fluorescence and the fluorophore concentration or absorbance. Third, this model can be expanded for quantitative mechanistic studies of fluorescence intensity variations triggered by stimuli treatments. One demonstrated example is to quantify temperature effects on the emission-wavelength-specific and total fluorescence quantum yield of anthracene. We expect that this first-principle model will be broadly adopted for both student education that promotes evidence-based learning and a variety of fluorescence applications where disentangling sample absorption and emission are critical for reliable data analysis.


Subject(s)
Fluorescent Dyes , Humans , Spectrometry, Fluorescence/methods
6.
Environ Res ; 191: 110183, 2020 12.
Article in English | MEDLINE | ID: mdl-32919969

ABSTRACT

Remediation of steroidal estrogens from aqueous ecosystems is of prevailing concern due to their potential impact on organisms even at trace concentrations. Biochar (BC) is capable of estrogen removal due to its rich porosity and surface functionality. The presented review emphasizes on the adsorption mechanisms, isotherms, kinetics, ionic strength and the effect of matrix components associated with the removal of steroidal estrogens. The dominant sorption mechanisms reported for estrogen were π-π electron donor-acceptor interactions and hydrogen bonding. Natural organic matter and ionic species were seen to influence the hydrophobicity of the estrogen in multiple ways. Zinc activation and magnetization of the BC increased the surface area and surface functionalities leading to high adsorption capacities. The contribution by persistent free radicals and the arene network of BC have promoted the catalytic degradation of adsorbates via electron transfer mechanisms. The presence of surface functional groups and the redox activity of BC facilitates the bacterial degradation of estrogens. The sorptive removal of estrogens from aqueous systems has been minimally reviewed as a part of a collective evaluation of micropollutants. However, to the best of our knowledge, a critique focusing specifically and comprehensively on BC-based removal of steroidal estrogens does not exist. The presented review is a critical assessment of the existing literature on BC based steroidal estrogen adsorption and attempts to converge the scattered knowledge regarding its mechanistic interpretations. Sorption studies using natural water matrices containing residue level concentrations, and dynamic sorption experiments can be identified as future research directions.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Adsorption , Charcoal , Estrogens , Water
7.
RSC Adv ; 9(31): 17612-17622, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-35520596

ABSTRACT

Tea-waste is an abundant feedstock for producing biochar (BC) which is considered to be a cost effective carbonaceous adsorbent useful for water remediation and soil amendment purposes. In the present study, tea-waste BC (TWBC) produced at three different temperatures were subjected to nitric, sulfuric and hydrochloric acid modifications (abbreviated as NM, SM and HM respectively). Characteristics of the raw and modified BC such as ultimate and proximate analyses, surface morphology, surface acidity and functionality, point of zero charge, cation exchange capacity (CEC) and thermal stability were compared to evaluate the influence of pyrolysis temperature and of modifications incorporated. The amount of carboxylic and phenolic surface functionalities on TWBC was seen to decrease by 93.44% and 81.06% respectively when the pyrolysis temperature was increased from 300 to 700 °C. Additionally, the yield of BC was seen to decrease by 46% upon the latter temperature increment. The elemental analysis results provided justification for high-temperature BC being more hydrophobic as was observed by the 61% increase in H/C ratio which is an indication of augmented aromatization. The CEC was the highest for the low-temperature BC and was seen to further increase by NM which is attributed to the 81.89% increase in carboxylic functionalities. The surface area was seen to significantly increase for BC700 upon NM (∼27 times). The SM led to pore wall destruction which was observed in scanning electron microscopy images. Findings would enable the rational use of these particular modifications in relevant remediation and soil amendment applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...