Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 1): 129147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181921

ABSTRACT

A composite of chitosan biopolymer with microalgae and commercial carbon-doped titanium dioxide (kronos) was modified by grafting an aromatic aldehyde (salicylaldehyde) in a hydrothermal process for the removal of brilliant green (BG) dye. The resulting Schiff's base Chitosan-Microalgae-TiO2 kronos/Salicylaldehyde (CsMaTk/S) material was characterised using various analytical methods (conclusive of physical properties using BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, XPS and point of zero charge). Box Behnken Design was utilised for the optimisation of the three input variables, i.e., adsorbent dose, pH of the media and contact time. The optimum conditions appointed by the optimisation process were further affirmed by the desirability test and employed in the equilibrium studies in batch mode and the results exhibited a better fit towards the pseudo-second-order kinetic model as well as Freundlich and Langmuir isotherm models, with a maximum adsorption capacity of 957.0 mg/g. Furthermore, the reusability study displayed the adsorptive performance of CsMaTk/S remains effective throughout five adsorption cycles. The possible interactions between the dye molecules and the surface of the adsorbent were derived based on the analyses performed and the electrostatic attractions, H-bonding, Yoshida-H bonding, π-π and n-π interactions are concluded to be the responsible forces in this adsorption process.


Subject(s)
Chitosan , Microalgae , Quaternary Ammonium Compounds , Water Pollutants, Chemical , Adsorption , Carbon , Chitosan/chemistry , Hydrogen-Ion Concentration , Aldehydes , Kinetics , Water Pollutants, Chemical/chemistry
2.
Nanomaterials (Basel) ; 12(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36432284

ABSTRACT

The limitations of TiO2 as a photocatalyst such as the larger bandgap energy, which only activates under the UV region, give a lower photocatalytic activity. This study reports the role of the N and Pt co-dopant on the modification of the TiO2 photocatalyst for photocatalytic degradation of methylene blue dye under different mode preparations, i.e., sequential and vice-versa modes. The sequential mode preparation of the N and Pt co-dopant TiO2 photocatalyst consisted of the initial preparation of the N-doped TiO2 (N-TiO2) under the calcination method, which was then further doped with platinum (Pt) through the photodeposition process labeled as NPseq-TiO2, while the vice-versa mode was labeled as PNrev-TiO2. About 1.58 wt.% of N element was found in the NPseq-TiO2 photocatalyst, while there was no presence of N element detected in PNrev-TiO2, confirmed through an elemental analyzer (CHNS-O) and (EDX) analysis. The optimum weight percentage of Pt for both modes was detected at about ±2.0 wt.%, which was confirmed by inductively coupled plasma-emission spectroscopy (ICP-OES). The photoactivity under methylene blue (MB) dye degradation of the NPseq-TiO2 photocatalyst was 2 and 1.5 times faster compared to the unmodified TiO2 and PNrev-TiO2, where the photodegradation rates were, ca., 0.065 min-1 and 0.078 min-1, respectively. This was due to the N elements being incorporated with the TiO2 lattice, which was proven by UV-Vis/DRS where the bandgap energy of NPseq-TiO2 was reduced from 3.2 eV to 2.9 eV. In addition, the N generated a stronger PL signal due to the formation of oxygen vacancies defects on the surface of the NPseq-TiO2 photocatalyst. The higher specific surface area as well as higher pore volume for the NPseq-TiO2 photocatalyst enhanced its photocatalytic activity. Moreover, the NPseq-TiO2 showed the lowest COD value, and it was completely mineralized after 7 h of light irradiation. The preparation order did not affect the Pt dopant but did for the N element. Therefore, it is significant to investigate different mode preparations of the N and Pt co-dopant for the modification of TiO2 to produce a good-quality photocatalyst for photocatalytic study under the photodegradation of MB dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...