Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e28252, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689958

ABSTRACT

Extreme hot conditions during summers, high poverty rate and continuous electricity load shedding affect commercial manufacturing and sale of ice in many countries. The vendors prepared ice using untreated piped water, tanker water and ground water. These waters may contain hazardous pollutants and ice made from them will pose a potential human health risk. Thus, it is important to regularly monitor the chemical composition of water sources and the quality of the manufactured ice. A contemporary examination was carried out to evaluate the physico-chemical properties and heavy metals and metalloids in the ice sold in all the districts of Karachi, Pakistan. This pioneering study was an innovative effort to assess the ice quality in relation to potential pollutant hazards to human health; with concomitant geospatial information. The geospatial distribution of ice quality and major constituents were among the measured parameters; carefully associated with further geospatial information, determined using GIS (Geographic Information Systems) and PCA (Principal Component Analysis) techniques. Interestingly, the physico-chemical analyses revealed that the ice quality was marginally adequate and the total mean metal-metalloid contents were in the sequence of Pb > Ni > Zn > Fe > Cr > As. The concentrations of these metals were above the upper allowable limits with reference to the recommended WHO guidelines. We observed that 57.1% and 35.7% ice samples had good physico-chemical properties assessed using the Ice Quality Index (IQI). Conversely, the IQI for metals showed that the ice was unsafe for human consumption. In terms of health risk assessment, the overall mean CDI (Chronic Daily Intake) and HQ (Hazard Quotient) values were in the order of Pb () > Ni (3.2) > Zn (2.3) > Fe (2.1) > Cr (1.6) > As (0.5) and Pb (7.4) > As (1.7) > Cr (0.5) > Ni (0.4 > Zn (0.008) > Fe (0.003), respectively. This study highlighted that routine monitoring of the water supplies available for making ice is required to protect public health.

2.
Sci Rep ; 14(1): 452, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172134

ABSTRACT

Urban atmospheric pollution is global problem and and have become increasingly critical in big cities around the world. Issue of toxic emissions has gained significant attention in the scientific community as the release of pollutants into the atmosphere rising continuously. Although, the Pakistani government has started the Pakistan Clean Air Program to control ambient air quality however, the desired air quality levels are yet to be reached. Since the process of mapping the dispersion of atmospheric pollutants in urban areas is intricate due to its dependence on multiple factors, such as urban vegetation and weather conditions. Therefore, present research focuses on two essential items: (1) the relationship between urban vegetation and atmospheric variables (temperature, relative humidity (RH), sound intensity (SI), CO, CO2, and particulate matter (PM0.5, PM1.0, and PM2.5) and (2) the effect of seasonal change on concentration and magnitude of atmospheric variables. A geographic Information System (GIS) was utilized to map urban atmospheric variables dispersion in the residential areas of Faisalabad, Pakistan. Pearson correlation and principal component analyses were performed to establish the relationship between urban atmospheric pollutants, urban vegetation, and seasonal variation. The results showed a positive correlation between urban vegetation, metrological factors, and most of the atmospheric pollutants. Furthermore, PM concentration showed a significant correlation with temperature and urban vegetation cover. GIS distribution maps for PM0.5, PM1.0, PM2.5, and CO2 pollutants showed the highest concentration of pollutants in poorly to the moderated vegetated areas. Therefore, it can be concluded that urban vegetation requires a rigorous design, planning, and cost-benefit analysis to maximize its positive environmental effects.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Seasons , Air Pollutants/analysis , Pakistan , Carbon Dioxide/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis , Cities , Environmental Pollutants/analysis
3.
Ecotoxicol Environ Saf ; 269: 115791, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38070417

ABSTRACT

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.


Subject(s)
Alkaloids , Aluminum , Aluminum/toxicity , Aluminum/metabolism , Malates/metabolism , Plant Breeding , Plants/metabolism , Alkaloids/pharmacology , Organic Chemicals/metabolism , Soil/chemistry , Plant Roots/metabolism , Gene Expression Regulation, Plant
4.
Environ Monit Assess ; 195(12): 1541, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38012481

ABSTRACT

Metal-containing dust is a potential severe environmental and human health threat. Metals present in dust may originate from car exhausts, tear and wear of tires, and vehicular emissions, which are less manageable. Metal-containing dust from roads can contaminate the soils, and crops alongside motorway. This study aimed to investigate the Pb Cd, Cu, Ni, and Zn concentrations in dust, soil, and vegetation collected from the M4 motorway Faisalabad. The results indicated that average metal concentrations in dust from all sites varies (Pb) 44.01 mg kg-1, (Cd) 1.22 mg kg-1, (Cu) 49.5 mg kg-1, (Ni) 28.3 mg kg-1, and (Zn) 113.7 mg kg-1. The pollution assessment indices CF and PLI of Industrial city and Painsra had comparatively maximum levels of environmental pollution. Moreover, the geo-accumulation index (Igeo) of metals was high at Chak 115 and Painsra, while Igeo at ten sites was in the following descending order: Cd > Pb > Cu > Ni > Zn. Furthermore, it was identified that the maximum ecological risk index (Eir) was in declining order, i.e., Cd > Pb > Cu > Ni > Zn, at all sites. The potential ecological risk was categorized as high risk in all respective sites. The particulate matter fractions PM2.5 and PM10 represented the maximum risk at the Industrial city site, which was unhealthy, although the Painsra site had poor air quality. The total suspended particulate was classified as hazardous at FDA city and Painsra. In contrast, food crops (maize, sugar cane, and sesame) and soil along the M4 motorway have similar Pb, Cd, Cu, Ni, and Zn contamination patterns like dust. However, two crops, maize and sugarcane, along the M4 motorway were found to be more polluted. The level of metals contamination through dust disposition was consistently higher adjacent to roads, possibly indicating depraved impacts on food crops.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Particulate Matter , Cadmium , Lead , Environmental Monitoring , Metals, Heavy/analysis , Dust/analysis , Risk Assessment , Soil , China , Soil Pollutants/analysis
5.
Plants (Basel) ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447029

ABSTRACT

Soil compaction has become a global problem affecting soil worldwide. With an increased population, more demands for food and wood have resulted in intensive cultivation and increased mechanization of our farmlands and irrigated plantations. The use of heavy machinery results in soil compaction, which affects the entire soil ecosystem. This study was conducted to analyze the impact of compacted soil on germination and initial growth stages of four major agro-forest trees of central Punjab, Pakistan. Morpho-physiological traits of all selected species (Eucalyptus camaldulensis, Albizia lebbeck, Vachellia nilotica, and Zyziphus mauritiana) were measured against soil compaction. Results indicated that the root and shoot length, biomass, root-shoot ratio, diameter at root collar, no. of leaves and branches, leaf area, germination, and survival %, and physiological traits (i.e., photosynthetic rate, transpiration rate, stomatal conductance, internal CO2 concentration, and photosynthetic water use efficiency) were significantly affected by the induced soil compaction. Eucalyptus camaldulensis Dehnh. performed better and exhibited 96% germination percentage under (1.40 mg m-3) compaction level and gradually decreased by 11% with the increase of compaction level (1.80 mg m-3). It shows that the shorter roots developed due to soil compaction decreased water use efficiency, photosynthesis, and whole-plant physiological performance. The findings concluded that judicious use of machinery is highly desired for sustainable and good-quality wood production from farm trees.

6.
Front Plant Sci ; 14: 1144145, 2023.
Article in English | MEDLINE | ID: mdl-37255552

ABSTRACT

Soil and air pollution caused by heavy metals and limestone dust are prevalent in urban environments and they are an alarming threat to the environment and humans. This study was designed to investigate the changes in morphological and physiological traits of three urban tree species seedlings (Bombax ceiba, Conocarpus lancifolius, and Eucalyptus camaldulensis) under the individual as well as synergetic effects of heavy metal lead (Pb) and limestone dust toxicities. The tree species were grown under controlled environmental conditions with nine treatments consisting of three levels of dust (0, 10, and 20 g) and three levels of Pb contaminated water irrigation (0, 5, and 10 mg L-1). The results depicted that the growth was maximum in T1 and minimum in T9 for all selected tree species. B. ceiba performed better under the same levels of Pb and limestone dust pollution as compared with the other two tree species. The B. ceiba tree species proved to be the most tolerant to Pb and limestone pollution by efficiently demolishing oxidative bursts by triggering SOD, POD, CAT, and proline contents under different levels of lead and dust pollution. The photosynthetic rate, stomatal conductance, evapotranspiration rate, and transpiration rate were negatively influenced in all three tree species in response to different levels of lead and dust applications. The photosynthetic rate was 1.7%, 3.1%, 7.0%, 11.03%, 16.2%, 23.8%, 24.8%, and 30.7%, and the stomatal conductance was 5%, 10.5%, 23.5%, 40%, 50.01%, 61.5%, 75%, and 90.9%, greater in T2, T3, T4, T5, T6, T7, T8, and T9 plants of B. ceiba, respectively, as compared to T1. Based on the findings, among these three tree species, B. ceiba is strongly recommended for planting in heavy metal and limestone dust-polluted areas followed by E. camaldulensis and C. lancifolius due to their better performance and efficient dust and heavy metal-scavenging capability.

7.
Environ Pollut ; 325: 121433, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36907241

ABSTRACT

Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/metabolism , Biodegradation, Environmental , Metals, Heavy/metabolism , Plants/metabolism , Photosynthesis , Plant Roots/metabolism , Soil Pollutants/metabolism
8.
Front Plant Sci ; 14: 1095888, 2023.
Article in English | MEDLINE | ID: mdl-36794215

ABSTRACT

Wood anatomy and plant hydraulics play a significant role in understanding species-specific responses and their ability to manage rapid environmental changes. This study used the dendro-anatomical approach to assess the anatomical characteristics and their relation to local climate variability in the boreal coniferous tree species Larix gmelinii (Dahurian larch) and Pinus sylvestris var. mongolica (Scots pine) at an altitude range of 660 m to 842 m. We measured the xylem anatomical traits (lumen area (LA), cell wall thickness (CWt), cell counts per ring (CN), ring width (RW), and cell sizes in rings) of both species at four different sites Mangui (MG), Wuerqihan (WEQH), Moredagha (MEDG) and Alihe (ALH) and investigated their relationship with temperature and precipitation of those sites along a latitude gradient. Results showed that all chronologies have strong summer temperature correlations. LA extremes were mostly associated with climatic variation than CWt and RWt. MEDG site species showed an inverse correlation in different growing seasons. The correlation coefficient with temperature indicated significant variations in the May-September months at MG, WEQH, and ALH sites. These results suggest that climatic seasonality changes in the selected sites positively affect hydraulic efficiency (increase in the diameter of the earlywood cells) and the width of the latewood produced in P. sylvestris. In contrast, L. gmelinii showed the opposite response to warm temperatures. It is concluded that xylem anatomical responses of L. gmelinii and P. sylvestris showed varied responses to different climatic factors at different sites. These differences between the two species responses to climate are due to the change of site condition on a large spatial and temporal scale.

9.
J Environ Manage ; 320: 115801, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35930882

ABSTRACT

Environmental pollution induced by heavy metals has been identified as a leading threat in the modern era. Woody tree species may play a crucial role in the removal of heavy metals from soil and air, thus minimizing pollution potential. The present study was designed to evaluate the phytoremediation potential of six tree species; Azadirachta indica, Cassia fistula, Conocarpus erectus, Eucalyptus camaldulensis, Morus alba, and Populus deltoids, respectively, in the industrial and residential areas of Faisalabad based on the concentrations of lead (Pb), zinc (Zn), cadmium (Cd), and copper (Cu) in their leaves and barks in winter (2018) and summer (2019) seasons. The seasonal contents of heavy metals in both the leaves and barks of these trees decreased in the order of: Zn > Pb > Cu > Cd at both study sites. The highest heavy metal contents were recorded in the leaves and barks of trees grown in the industrial areas as compared to residential areas, with leaves and barks having higher contents of heavy metals in the summer than winter. The tree species exhibited significantly different capacity for heavy metal accumulation, with the accumulation of Cd decreased in the order of: E. camaldulensis > M. alba > C. erectus > A. indica > P. deltoids > C. fistula, and while the order varied for different heavy metals. Overall, M. alba, E. camaldulensis and A. indica performed well in accumulating the targeted heavy metals from the ambient environment. Among the six tree species grown commonly in Faisalabad city, M. alba, E. camaldulensis, and A. indica are recommended for the industrial and residential areas due to their phytoremediation capacity for heavy metals.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Environmental Monitoring , Lead , Metals, Heavy/analysis , Pakistan , Seasons , Soil , Soil Pollutants/analysis , Trees
10.
Ecotoxicol Environ Saf ; 242: 113952, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35999767

ABSTRACT

Environmental pollution of heavy metals (HMs), mainly due to anthropogenic activities, has received growing attention in recent decades. HMs, especially the non-essential carcinogenic ones, including chromium (Cr), cadmium (Cd), mercury (Hg), aluminum (Al), lead (Pb), and arsenic (As), have appeared as the most significant air, water, and soil pollutants, which adversely affect the quantity, quality, and security of plant-based food all over the world. Plants exposed to HMs could experience significant decline in growth and yield. To avoid or tolerate the toxic effects of HMs, plants have developed complicated defense mechanisms, including absorption and accumulation of HMs in cell organelles, immobilization by forming complexes with organic chelates, extraction by using numerous transporters, ion channels, signalling cascades, and transcription elements, among others. OMICS strategies have developed significantly to understand the mechanisms of plant transcriptomics, genomics, proteomics, metabolomics, and ionomics to counter HM-mediated stress stimuli. These strategies have been considered to be reliable and feasible for investigating the roles of genomics (genomes), transcriptomic (coding), mRNA transcripts (non-coding), metabolomics (metabolites), and ionomics (metal ions) to enhance stress resistance or tolerance in plants. The recent developments in the mechanistic understandings of the HMs-plant interaction in terms of their absorption, translocation, and toxicity invasions at the molecular and cellular levels, as well as plants' response and adaptation strategies against these stressors, are summarized in the present review. Transcriptomics, genomics, metabolomics, proteomics, and ionomics for plants against HMs toxicities are reviewed, while challenges and future recommendations are also discussed.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Soil Pollutants , Arsenic/analysis , Mercury/analysis , Metals, Heavy/analysis , Plants/genetics , Soil , Soil Pollutants/analysis
11.
PLoS One ; 17(4): e0265005, 2022.
Article in English | MEDLINE | ID: mdl-35385517

ABSTRACT

Salinity is a global problem, and almost more than 20% of the total cultivated area of the world is affected by salt stress. Phytoremediation is one of the most suitable practices to combat salinity and recently biochar has showed the tremendous potential to alleviate salt-affected soils and enhance vegetation. Trees improve the soil characteristics by facilitating the leaching of salts and releasing organic acids in soil. Moreover, in the presence of trees, higher transpiration rates and lower evaporation rates are also helpful in ameliorating salt affected soils. This study was designed to check the effect of different levels of biochar on the morph-physiological characteristics of three important agroforestry tree species: Eucalyptus camaldulensis, Vachellia nilotica, and Dalbergia sissoo, in saline soils. Farmyard manure biochar was applied at the rate of 3% (w/w), 6% (w/w), and 9% (w/w) to find appropriate levels of biochar for promoting the early-stage trees growth under saline conditions. Results of the current study revealed that maximum shoot length (104.77 cm), shoot dry weight (23.72 g), leaves dry weight (28.23 g), plant diameter (12.32 mm), root length (20.89 cm), root dry weight (18.90 g), photosynthetic rate (25.33 µ moles CO2 m-2s-1) and stomatal conductance (0.12 mol H2O m-2 s-1) were discovered in the plants of Eucalyptus camaldulensis at the rate of 6% (w/w). All tree species showed better results for growth and physiological characteristics when biochar was applied at the rate of 6% (w/w). In comparison, a decreasing trend in growth parameters was found in the excessive amount of biochar when the application rate was increased from 6% (w/w) to 9% (w/w) for all three species. So, applying an appropriate level of biochar is important for boosting plant growth in saline soils. Among different tree species, Vachellia nilotica and Eucalyptus camaldulensis both showed very promising results to remediate salt affected soils with Vachellia nilotica showing maximum potential to absorb sodium ions.


Subject(s)
Eucalyptus , Soil , Charcoal , Farms , Manure , Trees
12.
Environ Sci Pollut Res Int ; 29(7): 10250-10262, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34519003

ABSTRACT

Forest ecosystem carbon (C) storage primarily includes vegetation layers C storage, litter C storage, and soil C storage. The precise assessment of forest ecosystem C storage is a major concern that has drawn widespread attention in global climate change worldwide. This study explored the C storage of different layers of the forest ecosystem and the nutrient enrichment capacity of the vegetation layer to the soil in the Castanopsis eyeri natural forest ecosystem (CEF) present in the northeastern Hunan province, central China. The direct field measurements were used for the estimations. Results illustrate that trunk biomass distribution was 48.42% and 62.32% in younger and over-mature trees, respectively. The combined biomass of the understory shrub, herb, and litter layers was 10.46 t·hm-2, accounting for only 2.72% of the total forest biomass. On average, C content increased with the tree age increment. The C content of tree, shrub, and herb layers was 45.68%, 43.08%, and 35.76%, respectively. Litter C content was higher in the undecomposed litter (44.07 %). Soil C content continually decreased as the soil depth increased, and almost half of soil C was stored in the upper soil layer. Total C stored in CEF was 329.70 t·hm-2 and it follows the order: tree layer > soil layer > litter layer > shrub layer > herb layer, with C storage distribution of 51.07%, 47.80%, 0.78%, 0.25%, and 0.10%, respectively. Macronutrient enrichment capacity from vegetation layers to soil was highest in the herb layer and lowest in the tree layer, whereas no consistent patterns were observed for trace elements. This study will help understand the production mechanism and ecological process of the C. eyeri natural forest ecosystem and provide the basics for future research on climate mitigation, nutrient cycling, and energy exchange in developing and utilizing sub-tropical vegetation.


Subject(s)
Ecosystem , Trees , Biomass , Carbon/analysis , Carbon Sequestration , China , Forests , Nutrients , Soil
13.
Int J Phytoremediation ; 24(5): 463-473, 2022.
Article in English | MEDLINE | ID: mdl-34304658

ABSTRACT

Pesticides are widely used for managing pathogens and pests for sustainable agricultural output to feed around seven billion people worldwide. After their targeted role, residues of these compounds may build up and persist in soils and in the food chain. This study evaluated the efficiency of bacterial strains capable of plant growth promotion and biodegradation of profenofos. To execute this, bacteria were isolated from an agricultural area with a history of repeated application of profenofos. The profenofos degrading bacterial strains with growth-promoting characteristics were identified based on biochemical and molecular approaches through partial 16S ribosomal rRNA gene sequencing. The results revealed that one strain, Enterobacter cloacae MUG75, degraded over 90% profenofos after 9 days of incubation. Similarly, plant growth was significantly increased in plants grown in profenofos (100 mg L-1) contaminated soil inoculated with the same strain. The study demonstrated that inoculation of profenofos degrading bacterial strains increased plant growth and profenofos degradation. Novelty statementPesticides are extensively applied in the agriculture sector to overcome pest attacks and to increase food production to fulfill the needs of the growing world population. Residues of these pesticides can persist in the environment for long periods, may enter the groundwater reservoirs and cause harmful effects on living systems highlighting the need for bioremediation of pesticide-contaminated environments. Microbes can use pesticides as a source of carbon and energy and convert them into less toxic and non-toxic products. Application of profenofos degrading rhizobacteria in interaction with the plants in the rhizosphere can remediate the pesticide-contaminated soils and minimize their uptake into the food chain. Hence, this approach can improve soil health and food quality without compromising the environment.


Subject(s)
Soil Pollutants , Solanum lycopersicum , Biodegradation, Environmental , Humans , Organothiophosphates/metabolism , Rhizosphere , Soil Microbiology , Soil Pollutants/metabolism
14.
J Hazard Mater ; 420: 126620, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329086

ABSTRACT

In this study, we investigated the distinct effects of organic (farmyard manure (FYM), cow dung (CD), biogas slurry (BGS), sugarcane bagasse (SCB)) and inorganic (gypsum and lignite) amendments on arsenic (As) accumulation by two rice genotypes, Kainat (fine) and Basmati-385 (coarse), under As stress. Results showed that shoot As concentration was ~2-time greater in Kainat compared to Basmati-385 (3.1-28 vs. 1.7-16 mg kg-1 DW, respectively), with the minimum shoot As content observed with CD and SCB. In contrast to gypsum and lignite, grain As concentration was significantly reduced with CD and SCB for Kainat (0.29 and 0.24 mg kg-1 DW) and Basmati-385 (0.04 and 0.09 mg kg-1 DW). Data indicated that the CD and SCB also improved chlorophyll a and b contents, reduced lipid peroxidation and hydrogen peroxide production in both rice genotypes. Significantly, the CD and SCB decreased grain As concentration below the FAO safe As limit in rice grain (0.2 mg kg-1 DW), especially in coarse rice genotype (Basmati-385), resulting in negligible As-induced human health risk. This study highlights the significance of amendments and rice genotypes controlling As accumulation in rice grain, which should be considered prior to As remediation program of paddy soils for limiting exposure of humans to As via rice grain.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Chlorophyll A , Genotype , Humans , Oryza/genetics , Soil , Soil Pollutants/analysis
15.
Environ Geochem Health ; 43(12): 5037-5051, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33811285

ABSTRACT

Arsenic (As) contamination in soil-plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil-plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg-1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure.


Subject(s)
Arsenic , Soil Pollutants , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Sulfates , Zea mays
16.
Int J Phytoremediation ; 23(13): 1412-1422, 2021.
Article in English | MEDLINE | ID: mdl-33765404

ABSTRACT

Soil reclamation through afforestation along with soil amendments is one of the most suitable practices to combat soil salinity while the use of biochar may have potential to ameliorate salt-affected soils. This study was designed to check effects of different biochars on the physico-chemical properties of soil and characteristics of three important agroforestry trees species: Eucalyptus camaldulensis, Vachellia nilotica and Dalbergia sissoo, in saline soils. Farmyard manure biochar (FYMB), sugarcane bagasse biochar (SCB), woodchips biochar (WCB) were applied (6% w/w) to check their effects on plants under saline conditions. Results revealed that FYMB was the best for promoting all growth and physiological parameters of three tree species while E. camaldulensis was the best suited species. Different types of biochars influenced the growth of agroforestry species differently as SCB showed better results for D. sissoo as compared to WCB but for V. nilotica and WCB was more effective than SCB. Trend of growth and other physiological attributes for E. camaldulensis and V. nilotica was FYMB > WCB > SCB > control whereas D. sissoo showed trend as FYMB > SCB > WCB > control. Biochar was helpful in improving physicochemical characteristics of saline soils by lowering values of soil EC and SAR but type of biochar has a differential effect on tree growth.Novelty statement: Biochar may be a potential source for the amelioration of salt affected soils while less is known about the effects of different types of biochars on the soil and eco-physiological response of important agroforestry trees species in saline soils. In this study, although all types of biochar ameliorated the soil conditions and enhanced the plant growth, but farmyard manure biochar was the most efficient treatment among three types of used biochars.


Subject(s)
Soil Pollutants , Trees , Biodegradation, Environmental , Charcoal , Salt Stress , Soil , Soil Pollutants/analysis
17.
Int J Phytoremediation ; 23(9): 969-981, 2021.
Article in English | MEDLINE | ID: mdl-33455421

ABSTRACT

Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.


Subject(s)
Soil Pollutants , Soil , Biodegradation, Environmental , Salinity , Trees
18.
Environ Int ; 123: 567-579, 2019 02.
Article in English | MEDLINE | ID: mdl-30622081

ABSTRACT

Globally, contamination of groundwater with toxic arsenic (As) is an environmental and public health issue given to its carcinogenic properties, thereby threatening millions of people relying on drinking As-contaminated well water. Here, we explored the efficiency of various biosorbents (egg shell, java plum seed, water chestnut shell, corn cob, tea waste and pomegranate peel) for arsenate (As(V)) and arsenite (As(III)) removal from As-contaminated water. Significantly, egg shell and java plum seed displayed the greatest As(III) elimination (78-87%) at 7 pH followed by water chestnut shell (75%), corn cob (67%), tea waste (74%) and pomegranate peel (65%). In contrast, 71% and 67% of As(V) was removed at pH 4.1 and 5.3 by egg shell and java plum seed, respectively. The maximum As(V) and As(III) sorption by all the biosorbents was obtained, notably for egg shell and java plum seed, after 2 h contact time. Langmuir isotherm and pseudo-second order models best fitted the sorption data for both forms of As. The -OH, -COOH, -NH2 and sulfur-bearing surface functional groups were possibly involved for As(III) and As(V) removal by biosorbents. The scanning electron microscopy combined with the energy dispersive X-ray spectroscopy (SEM-EDX) analysis showed that the heterogeneous surface of biosorbents, possessing rough and irregular areas, could have led to As sorption. Both As(V) and As(III) were successfully desorbed (up to 97%) from the biosorbents in four sorption/desorption (regeneration) cycles. This pilot-scale study highlights that egg shell and java plum seed have the greatest ability to remove both As species from As-contaminated drinking water. Importantly, these findings provide insights to develop an inexpensive, effective and sustainable filtration technology for the treatment of As in drinking water, particularly in developing countries like Pakistan.


Subject(s)
Arsenic/isolation & purification , Garbage , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Arsenates , Arsenic/chemistry , Arsenites , Filtration , Hydrogen-Ion Concentration , Kinetics , Pakistan , Spectrometry, X-Ray Emission , Thermodynamics , Water , Water Pollution/prevention & control
19.
Chemosphere ; 199: 737-746, 2018 May.
Article in English | MEDLINE | ID: mdl-29475162

ABSTRACT

In this study, we tested 123 groundwater wells from five different areas of Punjab, Pakistan for arsenic (As) contamination level and species, as well as delineated hydrogeochemical behaviour of As in aquifers. Results revealed that 75% and 41% of the groundwater wells exceeded the safe As limit of World Health Organisation (WHO, 10 µg L-1) and Pakistan-EPA (50 µg L-1), respectively. Arsenite (As(III)) and arsenate (As(V)) spanned 0-80% and 20-100% of total As (1.2-206 µg L-1), respectively. The mean As content (5.2 µg L-1) of shallow wells at 9-40 m depth did not exceed the WHO safe limit, representing a safe aquifer zone for pumping of groundwater compared to deeper wells at 41-90 m (51 µg L-1) and >90 m (23 µg L-1) depths. Piper-plot elucidated that the aqueous chemistry was dominated with Na-SO4, Na-Ca-SO4, Na-Mg-SO4 type saline water. Principal component analysis grouped As concentration with well depth, pH, salinity, Fe and CO3, exhibiting that these hydrogeochemical factors could have potential role in controlling As release/sequestration into the aquifers of study area. Geochemical modeling showed positive saturation indices only for iron (Fe) oxide-phases, indicating Fe oxides as the major carriers of As. Overall, this study provides insights to tackle emerging As threat to the communities in Punjab, Pakistan, as well as help develop suitable management/mitigation strategies - based on the baseline knowledge of As levels/species and factors governing As contamination in the study area.


Subject(s)
Arsenic/analysis , Groundwater/chemistry , Arsenic/chemistry , Environmental Monitoring/methods , Iron/analysis , Pakistan , Salinity , Water Pollutants, Chemical/analysis , Water Wells
20.
Ecotoxicol Environ Saf ; 143: 236-248, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551581

ABSTRACT

Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Solanum nigrum/metabolism , Biodegradation, Environmental , Metals, Heavy/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Solanum nigrum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...