Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 210: 111371, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815447

ABSTRACT

This work builds upon a prior study, examining the dosimetric utility of pencil lead and thin graphitic sheets, focusing upon the measurement of skin doses within the mammographic regime. In recognizing the near soft-tissue equivalence of graphite and the earlier-observed favourable thermoluminescence yield of thin sheets of graphite, this has led to present study of 50 µm thick graphite for parameters typical of external beam fractionated radiotherapy and skin dose evaluations. The graphite layers were annealed and then stacked to form an assembly of 0.5 mm nominal thickness. Using a 6 MV photon beam and delivering doses from 2- to 60 Gy, irradiations were conducted, the assembly first forming a superficial layer to a solid water phantom and subsequently underlying a 1.5 cm bolus, seeking to circumvent the build-up to electronic equilibrium for skin treatments. Investigations were made of several dosimetric properties arising from the thermoluminescence yield of the 50 µm thick graphite slabs, in particular proportionality and sensitivity to dose. The results show excellent sensitivity within the dose range of interest, the thermoluminescence response varying with increasing depth through the stacked graphite layers, obtaining a coefficient of determination of 90%. Acknowledging there to be considerable challenge in accurately matching skin thickness with dose, the graphite sheets have nevertheless shown considerable promise as dosimeters of skin, sensitive in determination of dose from the surface of the graphite through to sub-dermal depth thicknesses.


Subject(s)
Graphite , Photons , Skin , Graphite/chemistry , Skin/radiation effects , Humans , Radiation Dosimeters , Phantoms, Imaging , Radiotherapy Dosage , Thermoluminescent Dosimetry/methods , Equipment Design
2.
Appl Radiat Isot ; 196: 110771, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933313

ABSTRACT

Thermoluminescence (TL) materials have a broad variety of uses in various fields, such as clinical research, individual dosimetry, and environmental dosimetry, amongst others. However, the use of individual neutron dosimetry has been developing more aggressively lately. In this regard, present study establishes a relationship between the neutron dosage and the optical property changes of graphite-rich materials caused by high doses of neutron radiation. This has been done with the intention of developing a novel, graphite-based radiation dosimeter. Herein, the TL yield of commercially graphite-rich materials (i.e. graphite sheet, 2B and HB grade pencils) irradiated by neutron radiation with doses ranging from 250 Gy to 1500 Gy has been investigated. The samples were bombarded with thermal neutrons as well as a negligible amount of gamma rays, from the nuclear reactor TRIGA-II installed at the Bangladesh Atomic Energy Commission. The shape of the glow curves was observed to be independent of the given dosage, with the predominant TL dosimetric peak maintained within the region of 163 °C-168 °C for each sample. By studying the glow curves of the irradiated samples, some of the most well theoretical models and techniques were used to compute the kinetic parameters such as the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability, and trap lifetime (τ). All of the samples were found to have a good linear response over the whole dosage range, with 2B grade of polymer pencil lead graphite (PPLGs) demonstrating a higher level of sensitivity than both HB grade and graphite sheet (GS) samples. Additionally, the level of sensitivity shown by each of them is highest at the lowest dosage that was given, and it decreases as the dose increases. Importantly, the phenomenon of dose-dependent structural modifications and internal annealing of defects has been observed by assessing the area of deconvoluted micro-Raman spectra of graphite-rich materials in high-frequency areas. This trend is consistent with the cyclical pattern reported in the intensity ratio of defect and graphite modes in previously investigated carbon-rich media. Such recurrent occurrences suggest the idea of employing Raman microspectroscopy as a radiation damage study tool for carbonaceous materials. The excellent responses of the key TL properties of the 2B grade pencil demonstrate its usefulness as a passive radiation dosimeter. As a consequence, the findings suggest that graphite-rich materials have the potential to be useful as a low-cost passive radiation dosimeter, with applications in radiotherapy and manufacturing.

3.
Appl Radiat Isot ; 186: 110271, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35598564

ABSTRACT

In case of any natural disasters or technical failures of nuclear facilities, the surrounding media including human beings may receive unexpected radiation exposures. In such a situation, there is no viable way to know how much radiation dose is received by human beings. Realizing that motorized vehicles are parked at fixed but increasing distances within the nuclear installation and industrial environment, this study investigates the kinetic parameters of readily available car windscreens which form the basis to be employed in post-accident dose reconstruction or for retrospective dosimetry. To understand the luminescence features of this crystalline media, a convenient thermoluminescence (TL) technique has been employed. Several well-defined theoretical models and methods were employed to calculate the kinetic parameters including the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability and trap lifetime (τ), by analyzing the glow curves of the irradiated samples. The analysed trapping parameters indicate that the Toyota (E = 0.75-1.31 eV, s = 3.0E+6 - 3.7E+9 (s-1), τ = 6.9E+5 - 1.3E+14 s) and Honda (E = 0.95-1.68 eV, s = 2.1E+10 - 4.1E+13 (s-1), τ = 2.2E+9 - 3.1E+20 s) windscreen offer promising features for conventional TL dosimetry applications, while the obtained longer lifetime (τ = 6.8E+10 - 8.6E+29 s) or higher activation energy (E = 1.23-2.15 eV) for Proton brand windscreen indicates better stability or slow fading of the material, thus suitable for retrospective TL dosimetry. In addition, by assessing the area of deconvoluted micro-Raman spectra of windshield glasses in high-frequency regions, it has been observed the phenomenon of dose-dependent structural alterations and internal annealing of defects. This pattern is also consistent with those cyclical pattern observed in the intensity ratio of defect and graphite modes in the studies of carbon-rich media. Such common phenomena indicate the possibility of using the Raman microspectroscopy as a probe of radiation damage in silica-based media.


Subject(s)
Automobiles , Luminescent Measurements , Humans , Kinetics , Luminescent Measurements/methods , Retrospective Studies , Thermoluminescent Dosimetry/methods
4.
Appl Radiat Isot ; 175: 109782, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34082304

ABSTRACT

Among the various types of decorative materials used in Bangladeshi dwellings, the marble/marble stone is one of the most common ones that used largely for enhancing the beauty and/or aristocracy of the dwelling environment. In this study, the most commonly used, six types of marble stones, have been analyzed for retrospective accident dosimetry. With the interest of characterizing several key thermoluminescence properties to examine their potentiality for dosimetry, annealing - irradiation - readout steps have been done chronologically which comprises the analysis of glow curves, relative sensitivity, dose dependence, repeatability and fading. Considering the various TL parameters, marble 'Carrara' imported from Italy present relatively better capability for reconstruction of radiation dose in the dose range of 10-50 Gy. From fading result, it is clear that for reconstruction of absorbed dose up to four weeks of post exposure, the marble 'Carrara' is found to be the most reliable media among the studied marble types. The Zeff values for the various marble samples are found to be in the range of 13.65-19.12, comparing favorably in replace of TLD-200 (Zeff = 16.3) which can be used for low-level environmental radiation dosimetry. Present work constitutes the first study to investigate the potentials of marble stone for reconstruction of absorbed dose in the range of 10-50 Gy dose.

SELECTION OF CITATIONS
SEARCH DETAIL
...