Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 113(42): 11877-11882, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27708165

ABSTRACT

Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.


Subject(s)
Cell Communication , MAP Kinase Signaling System , Sterols/metabolism , Biomarkers , Cell Fusion , Enzyme Activation , Ergosterol/chemistry , Ergosterol/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression , Genes, Reporter , Hyphae/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation , Neurospora crassa/genetics , Neurospora crassa/metabolism , Phenotype , Protein Binding , Protein Kinase Inhibitors/pharmacology , Sterols/chemistry
2.
Food Chem ; 138(4): 2382-9, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23497899

ABSTRACT

We investigated the pyrazine production of 23 Pseudomonas isolates obtained from cork in order to assess their implications in off-flavour development. Off-flavour development in cork stoppers is a crucial process in maintaining the high quality of some wines. Pyrazine production was analyzed by headspace solid-phase-microextraction (HS-SPME) and gas chromatography coupled with mass spectrometry (GC-MS). Five out of the 23 isolates, i.e. Pseudomonas koreensis TCA20, Pseudomonas palleroniana TCA16, Pseudomonas putida TCA23 and N7, and Pseudomonas stutzeri TRA27a were able to produce branched alkyl-substituted pyrazines. For isolates N7 and TCA16, 14 compounds could be identified as pyrazines. The use of mineral media supplemented with different carbon and nitrogen sources resulted in changes in the pyrazine production capacity. In the two strains the amount of pyrazines produced was higher with glucose and decreased significantly with lactate. In all cases, 2,5-di(1-methylethyl)pyrazine was found to be dominant and independent of amino acid addition, suggesting a completely de novo synthesis. Aroma descriptions of most alkyl substituted pyrazines include mild vegetal aromas, not necessarily undesirable for the cork manufacturing industry. Methoxypyrazines, exhibiting earthy and musty aromas, could not be detected in any of the strains analysed.


Subject(s)
Food Packaging/instrumentation , Pseudomonas/metabolism , Pyrazines/metabolism , Wine/microbiology , Mass Spectrometry , Odorants , Pseudomonas/chemistry , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pyrazines/chemistry , Wine/analysis
3.
Appl Microbiol Biotechnol ; 97(19): 8777-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23179618

ABSTRACT

During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.


Subject(s)
Air Conditioning/instrumentation , Bacteria/classification , Bacteria/metabolism , Biofilms/growth & development , Biota , Environmental Microbiology , Volatile Organic Compounds/metabolism , Automobiles , Bacteria/growth & development , Bacterial Physiological Phenomena , Climate , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gas Chromatography-Mass Spectrometry , Phylogeny , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Tuberculosis (Edinb) ; 92(6): 535-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22883935

ABSTRACT

Tuberculosis (TB) diagnosis in regions with limited resources depends on microscopy with insufficient sensitivity. Rapid diagnostic tests of low cost but high sensitivity and specificity are needed for better point-of-care management of TB. Trained African giant pouched rats (Cricetomys sp.) can diagnose pulmonary TB in sputum but the relevant Mycobacterium tuberculosis (Mtb)-specific volatile compounds remain unknown. We investigated the odour volatiles of Mtb detected by rats in reference Mtb, nontuberculous mycobacteria, Nocardia sp., Streptomyces sp., Rhodococcus sp., and other respiratory tract microorganisms spiked into Mtb-negative sputum. Thirteen compounds were specific to Mtb and 13 were shared with other microorganisms. Rats discriminated a blend of Mtb-specific volatiles from individual, and blends of shared, compounds (P = 0.001). The rats' sensitivity for typical TB-positive sputa was 99.15% with 92.23% specificity and 93.14% accuracy. These findings underline the potential of trained Cricetomys rats for rapid TB diagnosis in resource-limited settings, particularly in Africa where Cricetomys rats occur widely and the burden of TB is high.


Subject(s)
Mycobacterium tuberculosis/chemistry , Sputum/chemistry , Tuberculosis/diagnosis , Animals , Bacterial Typing Techniques/methods , Behavior, Animal/physiology , Cricetinae , Diagnosis, Differential , Nocardia/chemistry , Odorants/analysis , Reproducibility of Results , Rhodococcus/chemistry , Sensitivity and Specificity , Sputum/microbiology , Streptomyces/chemistry , Volatilization
5.
Beilstein J Org Chem ; 8: 290-9, 2012.
Article in English | MEDLINE | ID: mdl-22423297

ABSTRACT

Volatiles released by pathogenic and nonpathogenic mycobacteria, as well as by mycobacteria-related Nocardia spp., were analyzed. Bacteria were cultivated on solid and in liquid media, and headspace samples were collected at various times during the bacterial lifecycle to elucidate the conditions giving optimal volatile emission. Emitted volatiles were collected by using closed-loop stripping analysis (CLSA) and were analyzed by gas-chromatography-mass-spectrometry. A wide range of compounds was produced, although the absolute amount was small. Nevertheless, characteristic bouquets of compounds could be identified. Predominantly aromatic compounds and fatty-acid derivatives were released by pathogenic/nonpathogenic mycobacteria, while the two Nocardia spp. (N. asteroides and N. africana) emitted the sesquiterpene aciphyllene. Pathogenic Mycobacterium tuberculosis strains grown on agar plates produced a distinct bouquet with different volatiles, while liquid cultures produce less compounds but sometimes an earlier onset of volatile production because of their steeper growth curves under this conditions. This behavior differentiates M. tuberculosis from other mycobacteria, which generally produced fewer compounds in seemingly lower amounts. Knowledge of the production of volatiles by M. tuberculosis can facilitate the rational design of alternative and faster diagnostic measures for tuberculosis.

6.
J Clin Microbiol ; 50(2): 274-80, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22135255

ABSTRACT

Trained African giant-pouched rats (Cricetomys gambianus) can detect Mycobacterium tuberculosis and show potential for the diagnosis of tuberculosis (TB). However, rats' ability to discriminate between clinical sputum containing other Mycobacterium spp. and nonmycobacterial species of the respiratory tract is unknown. It is also unknown whether nonmycobacterial species produce odor similar to M. tuberculosis and thereby cause the detection of smear-negative sputum. Sputum samples from 289 subjects were analyzed by smear microscopy, culture, and rats. Mycobacterium spp. were isolated on Lowenstein-Jensen medium, and nonmycobacterial species were isolated on four different media. The odor from nonmycobacterial species from smear- and M. tuberculosis culture-negative sputa detected by ≥2 rats ("rat positive") was analyzed by gas chromatography-mass spectrometry and compared to the M. tuberculosis odor. Rats detected 45 of 56 confirmed cases of TB, 4 of 5 suspected cases of TB, and 63 of 228 TB-negative subjects (sensitivity, 80.4%; specificity, 72.4%; accuracy, 73.9%; positive predictive value, 41.7%; negative predictive value, 93.8%). A total of 37 (78.7%) of 47 mycobacterial isolates were M. tuberculosis complex, with 75.7% from rat-positive sputa. Ten isolates were nontuberculous mycobacteria, one was M. intracellulare, one was M. avium subsp. hominissuis, and eight were unidentified. Rat-positive sputa with Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus spp., and Enterococcus spp. were associated with TB. Rhodococcus, Nocardia, Streptomyces, Staphylococcus, and Candida spp. from rat-positive sputa did not produce M. tuberculosis-specific volatiles (methyl nicotinate, methyl para-anisate, and ortho-phenylanisole). Prevalence of Mycobacterium-related Nocardia and Rhodococcus in smear-negative sputa did not equal that of smear-negative mycobacteria (44.7%), of which 28.6% were rat positive. These findings and the absence of M. tuberculosis-specific volatiles in nonmycobacterial species indicate that rats can be trained to specifically detect M. tuberculosis.


Subject(s)
Animal Experimentation , Bacteria/isolation & purification , Bacteria/pathogenicity , Clinical Laboratory Techniques/methods , Sputum/microbiology , Tuberculosis/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Rats , Sensitivity and Specificity , Young Adult
7.
Chem Biodivers ; 7(9): 2129-44, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20860022

ABSTRACT

The biosynthesis of the volatiles 2,5- and 2,6-diisopropylpyrazine (2 and 3, resp.) released by the myxobacteria Nannocystis exedens subsp. cinnabarina (Na c29) and Chondromyces crocatus (strains Cm c2 and Cm c5) was studied. Isotopically labeled precursors and proposed pathway intermediates were fed to agar plate cultures of the myxobacteria. Subsequently, the volatiles were collected by use of a closed loop stripping apparatus (CLSA), and incorporation into the pyrazines was followed by GC/MS analysis. [(2)H(8)]Valine was smoothly incorporated into both pyrazines clearly establishing their origin from the amino acid pool. The cyclic dipeptide valine anhydride (16)--a potential intermediate on the biosynthetic pathway to branched dialkylpyrazines--was synthesized containing (2)H(1) labels in specific positions. Feeding of [(2)H(16)]-16 and [(2)H(12)]-16 in both valine subunits mainly resulted in the formation of pyrazines derived from only one labeled amino acid, whereas only traces of the expected pyrazines with two labeled subunits were found. To investigate the origin of nitrogen in the pyrazines, a feeding experiment with [(15)N]valine was performed, resulting in the incorporation of the (15)N label. The results contradict a biosynthetic pathway via cyclic dipeptides, but rather point to a pathway on which valine is reduced to valine aldehyde. Its dimerization to 2,5-diisopropyldihydropyrazine 36 and subsequent oxidation results in 2. The proposed biosynthetic pathway neatly fits the results of earlier labeling studies and also explains the formation of the regioisomer 2,6-diisopropylpyrazine 3 by isomerization during the first condensation step of two molecules valine aldehyde. A general biosynthetic pathway to different classes of pyrazines is presented.


Subject(s)
Myxococcales/metabolism , Pyrazines/chemistry , Pyrazines/isolation & purification , Aldehydes/chemical synthesis , Aldehydes/metabolism , Bacteriological Techniques , Carbohydrate Sequence , Culture Media , Gas Chromatography-Mass Spectrometry , Glycine/chemical synthesis , Glycine/metabolism , Isomerism , Myxococcales/growth & development , Valine/chemical synthesis , Valine/metabolism , Volatilization
8.
Chem Biodivers ; 7(9): 2228-53, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20860026

ABSTRACT

The analysis of the volatiles released by the novel bacterial isolate Chitinophaga Fx7914 revealed the presence of ca. 200 compounds including different methyl esters. These esters comprise monomethyl- and dimethyl-branched, saturated, and unsaturated fatty acid methyl esters that have not been described as bacterial volatiles before. More than 30 esters of medium C-chain length were identified, which belong to five main classes, methyl (S)-2-methylalkanoates (class A), methyl (S)-2,(ω-1)-dimethylalkanoates (class B), methyl 2,(ω-2)-dimethylalkanoates (class C), methyl (E)-2-methylalk-2-enoates (class D), and methyl (E)-2,(ω-1)-dimethylalk-2-enoates (class E). The structures of the compounds were verified by GC/MS analysis and synthesis of the target compounds as methyl (S)-2-methyloctanoate (28), methyl (S)-2,7-dimethyloctanoate ((S)-43), methyl 2,6-dimethyloctanoate (49), methyl (E)-2-methylnon-2-enoate (20a), and methyl (E)-2,7-dimethyloct-2-enoate (41a). Furthermore, the natural saturated 2-methyl-branched methyl esters showed (S)-configuration as confirmed by GC/MS experiments using chiral phases. Additionally, the biosynthetic pathway leading to the methyl esters was investigated by feeding experiments with labeled precursors. The Me group at C(2) is introduced by propanoate incorporation, while the methyl ester is formed from the respective carboxylic acid by a methyltransferase using S-adenosylmethionine (SAM).


Subject(s)
Fatty Acids, Unsaturated/isolation & purification , Fatty Acids, Volatile/isolation & purification , Fatty Acids/isolation & purification , Sphingobacterium/chemistry , Culture Media , Esters , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Volatile/biosynthesis , Fatty Acids, Volatile/chemistry , Gas Chromatography-Mass Spectrometry , Methylation , Molecular Structure , Sphingobacterium/growth & development , Sphingobacterium/metabolism , Stereoisomerism , Volatilization
9.
Chembiochem ; 11(13): 1914-9, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20680979

ABSTRACT

2-Methyltetrahydrothiophen-3-one (3) is a volatile compound that plays an important role especially in food and flavour chemistry because it contributes to the aroma of several foodstuffs including wine. Although 3 can be formed by chemical reactions during food preparation, it is also produced by microorganisms. Recent studies with yeasts showed that methionine (1) is a potential precursor of 3, but the mechanism of the transformation is unknown. The biosynthetic pathway leading to 3 in the bacterium Chitinophaga Fx7914 was probed. Extensive feeding experiments with differently labelled precursors by using liquid cultures of Chitinophaga Fx7914 were performed. The volatiles released by the bacterium were collected by using a closed loop stripping apparatus (CLSA) and analysed by GC-MS. The observed incorporation pattern of the precursors into 3 led to the elucidation of the biosynthetic pathway. One part of the compound 2 originates from homocysteine (15), which is transformed into 3-mercaptopropanal (17). The second biosynthetic building block is pyruvate (14). An acyloin-forming reaction furnishes the key intermediate 21, which cyclises intramolecularly to a diol. Dehydration followed by tautomerisation lead to the cyclic ketone 3, which is produced by the bacterium in racemic form.


Subject(s)
Sphingobacterium/metabolism , Thiophenes/metabolism , Homocysteine/chemistry , Isotope Labeling , Mass Spectrometry , Methionine/chemistry , Pyruvic Acid/chemistry , Sphingobacterium/chemistry , Stereoisomerism , Thiophenes/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...