Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732065

ABSTRACT

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Subject(s)
Carotenoids , Light , Thymus Plant , Trichoderma , Volatile Organic Compounds , Thymus Plant/chemistry , Thymus Plant/metabolism , Trichoderma/metabolism , Trichoderma/growth & development , Carotenoids/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Chlorophyll/metabolism , Terpenes/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Antioxidants/metabolism , Anthocyanins/metabolism , Anthocyanins/analysis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development
2.
Cells ; 12(9)2023 04 27.
Article in English | MEDLINE | ID: mdl-37174671

ABSTRACT

Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, ß-phellandrene, ß-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and ß-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.


Subject(s)
Hypocrea , Solanum lycopersicum , Trichoderma , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Soil
3.
Cells ; 12(2)2023 01 05.
Article in English | MEDLINE | ID: mdl-36672168

ABSTRACT

Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.


Subject(s)
Air Pollutants , Plants , Plants/metabolism , Photosynthesis , Plant Leaves/metabolism , Formaldehyde
4.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231012

ABSTRACT

In the present study, Trichoderma virens TRS 106 decreased grey mould disease caused by Botrytis cinerea in tomato plants (S. lycopersicum L.) by enhancing their defense responses. Generally, plants belonging to the 'Remiz' variety, which were infected more effectively by B. cinerea than 'Perkoz' plants, generated more reactive molecules such as superoxide (O2-) and peroxynitrite (ONOO-), and less hydrogen peroxide (H2O2), S-nitrosothiols (SNO), and green leaf volatiles (GLV). Among the new findings, histochemical analyses revealed that B. cinerea infection caused nitric oxide (NO) accumulation in chloroplasts, which was not detected in plants treated with TRS 106, while treatment of plants with TRS 106 caused systemic spreading of H2O2 and NO accumulation in apoplast and nuclei. SPME-GCxGC TOF-MS analysis revealed 24 volatile organic compounds (VOC) released by tomato plants treated with TRS 106. Some of the hexanol derivatives, e.g., 4-ethyl-2-hexynal and 1,5-hexadien-3-ol, and salicylic acid derivatives, e.g., 4-hepten-2-yl and isoamyl salicylates, are considered in the protection of tomato plants against B. cinerea for the first time. The results are valuable for further studies aiming to further determine the location and function of NO in plants treated with Trichoderma and check the contribution of detected VOC in plant protection against B. cinerea.


Subject(s)
Hypocrea , S-Nitrosothiols , Solanum lycopersicum , Volatile Organic Compounds , Botrytis/physiology , Hexanols/pharmacology , Hydrogen Peroxide/pharmacology , Nitric Oxide , Nitrogen , Oxygen/pharmacology , Peroxynitrous Acid , Plant Diseases , S-Nitrosothiols/pharmacology , Salicylic Acid/pharmacology , Superoxides
5.
Front Plant Sci ; 10: 421, 2019.
Article in English | MEDLINE | ID: mdl-31057564

ABSTRACT

In the present study, Trichoderma atroviride TRS25 is presented as a biological control agent, which significantly limits the development of infection and reduces the disease caused by the pathogenic fungus Rhizoctonia solani in cucumber plants (Cucumis sativus L.). The systemic disease suppression is related to oxidative, signaling, and biochemical changes, that are triggered in response to a pathogen. Induction of systemic defense in cucumber by TRS25 greatly depends on the accumulation of signaling molecules including hydrogen peroxide (H2O2) and nitric oxide (NO) as well as salicylic acid (SA) and its derivatives including methyl salicylate (MeSA) and octyl salicylate (OSA). The study established that NO was accumulated in leaves and shoots of the cucumber plants, especially those pretreated with Trichoderma and inoculated with R. solani, where the compound was accumulated mainly in the cells localized in the vascular bundles and in epidermal tissues. We suggest, for the first time, that in the plants pretreated with TRS25, the accumulation of H2O2 and NO may be related to catalase (CAT) and S-nitrosoglutathione reductase (GSNOR) activity decrease. On the other hand, excessive accumulation of NO and SA may be controlled by forming their inactive forms, S-nitrosothiols (SNO) and salicylic acid glucosylated conjugates (SAGC), respectively. The obtained results suggest that the mentioned molecules may be an important component of the complex signaling network activated by TRS25, which is positively involved in systemic defense responses of cucumber plants against R. solani.

6.
Protoplasma ; 255(1): 359-373, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28879466

ABSTRACT

In the present study, the spread of Rhizoctonia solani-induced disease was limited when cucumber plants were pretreated with Trichoderma atroviride TRS25. The systemic disease suppression was related to TRS25-induced resistance (TISR) induction with simultaneous plant growth promotion. Protection of cucumber was related to enhanced activity of defense enzymes, e.g., guaiacol peroxidase (GPX), syringaldazine peroxidase (SPX), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) as well as phenolic (PC) concentration increases in the conditions of hydrogen peroxide (H2O2) accumulation, resulting in thiobarbituric acid reactive substance (TBARS) decrease. Moreover, the obtained results indicated that TISR might depend on accumulation of salicylic acid derivatives, that is methyl salicylate (MeSA), ethylhexyl salicylate (EHS), salicylic acid glucosylated conjugates (SAGC), and ß-cyclocitral as well as volatile organic compounds (VOC) such as Z-3-hexanal, Z-3-hexenol, and E-2-hexenal. The results point to important, not previously documented, roles of these VOC in TISR signaling with up-regulation of PR1 and PR5 gene characteristic of systemic acquired resistance (SAR) and of PR4 gene, marker of induced systemic resistance (ISR). The study established that TRS25 enhanced deposition of callose and lignin in specialized plant cells, which protected vascular system in cucumber shoots and roots as well as assimilation cells and dermal tissues in shoots and leaves. These compounds protected cucumber organs against R. solani influence and made them more flexible and resilient, which contributed to better nutrition and hydration of plants. The growth promotion coupled with systemic mobilization of biochemical and mechanical strengthening might be involved in multilayer protection of cucumber against R. solani activated by TRS25.


Subject(s)
Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Rhizoctonia/chemistry , Trichoderma/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...