Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; : 1-10, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885074

ABSTRACT

This study evaluates for the first time whether 33 species of annual and perennial herbaceous plants originating from a moderate climate continue to be capable of air filtration of particulate matter (PM) at the end of the growing season. Research was undertaken in November in two urban meadows located in trafficked areas of Bialystok (Poland). The study reveals that despite the lateness in the season, tested species remained capable of PM accumulation. Deposition of total PM exceeding 100 µg·cm-2 was found on S. vulgaris, S. latifolia, T. pratense, E. vulgare, and A. officinalis. The finest and most toxic fraction was accumulated most effectively by S. latifolia, E. vulgare, and L. vulgare (>12 µg·cm-2). Taraxacum officinale and M. sylvestris retained c. 60% of PM in their epicuticular wax. A slight significant correlation was found between rosette growth pattern and deposition of total PM on foliage, while the accumulation of the finest fraction was correlated with a simple leaf shape. These results support the usefulness of urban meadows as long-lasting air bio-filters provided that their composition includes species that have a confirmed, prolonged PM accumulation capacity and that the meadow is not mown in autumn.


This is the first time that the PM accumulation capacity of urban meadow species at the end of the vegetative season has been evaluated in real-life conditions. Evidence of prolonged PM deposition on herbaceous plants was obtained. To enhance PM mitigation in cities located in moderate climate zones, it is proposed that a selection of species be sown in urban meadows.

2.
Article in English | MEDLINE | ID: mdl-37351744

ABSTRACT

Particulate matter (PM) is one of the most important air pollutants, especially in urban areas. The efficiency of PM biofiltration by plants depends on the morphological features of the foliage. More PM is deposited on complex leaves, covered with thick wax layer, trichomes, epidermal glands, and convex venation. Very few literature reports suggest that also the presence of mycelium of nonparasitic and saprophytic fungi positively affects the accumulation of PM on the leaves. In this work, to our best knowledge, for the first time the effect of the mycelium of the parasitic powdery mildew on the efficiency of PM accumulation by urban greenery was studied. Uninfested and fungus-infested leaves of Acer negundo L., Malus domestica Borkh Quercus robur L., and Berberis vulgaris L. were harvested in July in the center of Warsaw city. The effect of powdery mildew infection on PM accumulation was species-specific. A higher amount of PM on leaves not infected with powdery mildew was found in M. domestica and Q. robur, while in A. negundo and B. vulgaris more PM was accumulated on leaves infected with fungus. All species (except A. negundo) accumulated more of the PM of 0.2-2.5-µm and 2.5-10-µm size fractions on leaves not infected with powdery mildew. One of the greatest consequences of the presence of powdery mildew mycelium on the foliage is most probably reduction of the direct involvement of waxes in PM accumulation and retention processes.

3.
J Exp Bot ; 73(6): 1789-1799, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35134869

ABSTRACT

The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.


Subject(s)
Micronutrients , Trace Elements , Agriculture/methods , Crops, Agricultural/metabolism , Food, Fortified , Homeostasis , Humans , Micronutrients/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...