Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(11): 1774-1777, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36781335

ABSTRACT

Pneumococcal conjugate vaccines (PCVs) have reduced vaccine-type pneumococcal disease but in turn have also resulted in replacement with non-vaccine serotypes. One such serotype, 35B, a multidrug resistant type, has been associated with an increase in disease. Mice were immunized intramuscularly with monovalent pneumococcal polysaccharide 35B conjugated to CRM197 containing aluminum phosphate adjuvant on days 0, 14, and 28. Pneumococcal enzyme-linked immunosorbent assay, opsonophagocytic killing assays, and competition OPA were performed for STs 35B and 29 to measure serotype-specific binding and functional antibodies. On day 52, mice were intratracheally challenged with S. pneumoniae ST29 to evaluate cross-protection. 35B-CRM197 immunized mice had binding and functional antibodies to both PnPs 35B and 29. 35B-CRM197 immunized mice were 100% protected from IT challenge with S. pneumoniae ST29 as compared to 30% survival in the naïve group. Future vaccines containing polysaccharide 35B, such as the investigational 21-valent PCV, V116, may provide cross protection against the non-vaccine serotype 29 due to structural similarity.


Subject(s)
Pneumococcal Infections , Pneumonia , Animals , Mice , Serogroup , Cross Protection , Streptococcus pneumoniae , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Vaccines, Conjugate , Antibodies, Bacterial
2.
Vaccine ; 41(4): 903-913, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36566163

ABSTRACT

Despite the widespread effectiveness of pneumococcal conjugate vaccines on the overall incidence of invasive pneumococcal disease, the global epidemiological landscape continues to be transformed by residual disease from non-vaccine serotypes, thus highlighting the need for vaccines with expanded disease coverage. To address these needs, we have developed V116,an investigational 21-valent non-adjuvanted pneumococcal conjugate vaccine (PCV),containingpneumococcal polysaccharides (PnPs) 3, 6A, 7F, 8, 9N, 10A, 11A,12F, 15A, 16F, 17F, 19A, 20, 22F, 23A, 23B, 24F, 31, 33F, 35B, anda de-O-acetylated 15B(deOAc15B) individually conjugated to the nontoxic diphtheria toxoid CRM197 carrier protein. Preclinical studies evaluated the immunogenicity of V116 inadult monkeys, rabbits, and mice. Following one dose, V116 was found to be immunogenic in preclinical animal species and induced functional antibodies for all serotypes included in the vaccine, in addition to cross-reactive functional antibodies to serotypes 6C and 15B. In these preclinical animal studies, the increased valency of V116 did not result in serotype-specific antibody suppression when compared to lower valent vaccines V114 or PCV13. In addition, when compared with naïve controls, splenocytes from V116 to immunized animals demonstrated significant induction of CRM197-specific T cells in both IFN-γ and IL-4 ELISPOT assays, as well as Th1 and Th2 cytokine induction through in vitro stimulation assays, thus suggesting the ability of V116 to engage T cell dependent immune response pathways to aid in development of memory B cells. V116 also demonstrated significant protection in mice from intratracheal challenge with serotype 24F, a novel serotype not contained in any currently licensed vaccine.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Rabbits , Mice , Animals , Pneumococcal Vaccines , Vaccines, Conjugate , Macaca mulatta , Antibodies, Bacterial , Pneumococcal Infections/prevention & control , Serogroup , Disease Models, Animal
3.
J Pharm Sci ; 110(1): 97-107, 2021 01.
Article in English | MEDLINE | ID: mdl-33164785

ABSTRACT

Despite a consistent benefit of existing pneumococcal conjugate vaccine (PCV) on invasive pneumococcal disease and pneumonia across different epidemiological settings a tremendous gap exists towards global PCV coverage. Currently, no lyophilized dosage form exists in the PCV global vaccine marketplace and currently licensed vaccines target some, but not all relevant serotypes of Streptococcus pneumoniae. The development of lyophilized presentations of an adjuvanted multivalent vaccine formulation that aligns with the evolving epidemiological assessment of the pneumococcal disease offers broader coverage with distinct cold chain and thermostability advantages. To make progress towards this goal, we evaluated the feasibility of developing new formulation to enable a lyophilized adjuvanted PCV vaccine containing 15 different serotypes. Our findings successfully demonstrate a formulation design space that enables enhanced physical stability which controls vaccine agglomeration, preserves in-vitro vaccine potency, maintains PCV antigen adsorption, and yields elegant lyophilized cakes with acceptable clinically relevant reconstitution times. This research also demonstrates the benefit of utilizing specific vaccine formulation excipients and the effectiveness of excipient combinations that may be beneficial for other multivalent adjuvant containing vaccines to enable novel lyophilized formulations necessary for improved global vaccine access.


Subject(s)
Excipients , Pneumococcal Infections , Humans , Pneumococcal Vaccines , Vaccines, Combined , Vaccines, Conjugate
4.
Vaccine ; 35(6): 865-872, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28087148

ABSTRACT

Pneumococcal disease continues to be a medical need even with very effective vaccines on the market. Globally, there are extensive research efforts to improve serotype coverage with novel vaccines; therefore, conducting preclinical studies in different animal models becomes essential. The work presented herein focuses on evaluating a 15-valent pneumococcal conjugate vaccine (PCV15) in mice. Initially we evaluated several doses of PCV15 in Balb/c mice. The optimal vaccine dose was determined to be 0.4µg per pneumococcal polysaccharide (PS) (0.8µg of 6B) for subsequent studies. This PS dose was chosen for PCV evaluation in mice based on antibody levels determined by multiplexed electrochemiluminescent (ECL) assays, T-cell responses following in vitro stimulation with CRM197 peptides and protection from pneumococcal challenge. We then selected four mouse strains for evaluation: Balb/c, C3H/HeN, CD1 and Swiss Webster (SW), immunized with PCV15 by either intraperitoneal (IP) or intramuscular (IM) routes. We assessed IgG responses by ECL assays and functional antibody activity by multiplexed opsonophagocytic assays (MOPA). Every mouse strain evaluated responded to all 15 serotypes contained in the vaccine. Mice tended to have lower responses to serotypes 6B, 23F and 33F. The IP route of immunization resulted in higher antibody titers for most serotypes in Balb/c, C3H and SW. CD1 mice tended to respond similarly for most serotypes, regardless of route of immunization. Similar trends were observed with the four mouse strains when evaluating functional antibody activity. Given the differences in antibody responses based on mouse strain and route of immunization, it is critical to evaluate pneumococcal vaccines in multiple animal models to determine the optimal formulation before moving to clinical trials.


Subject(s)
Antibodies, Bacterial/biosynthesis , Immunoglobulin G/biosynthesis , Pneumococcal Vaccines/administration & dosage , Pneumonia, Pneumococcal/prevention & control , Streptococcus pneumoniae/drug effects , Vaccination , Animals , Bacterial Proteins/pharmacology , Disease Models, Animal , Dose-Response Relationship, Immunologic , Drug Evaluation, Preclinical , Female , Humans , Injections, Intramuscular , Injections, Intraperitoneal , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred Strains , Pneumococcal Vaccines/chemical synthesis , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Polysaccharides, Bacterial/administration & dosage , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Serogroup , Species Specificity , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Vaccines, Conjugate
5.
J Pharm Sci ; 93(10): 2458-75, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15349956

ABSTRACT

We have evaluated the stability profiles of adenovirus type-5 (Ad5)-based vaccine formulations to identify liquid formulations that are stable during long-term storage at 4 degrees C. By identifying the major physiochemical inactivation pathway(s) during storage, formulations of Ad5 were designed with specific pharmaceutical excipients leading to greatly enhanced stability. For example, results indicate that Ad5 is stabilized by non-ionic surfactants and cryoprotectants as well as excipients known to inhibit free-radical oxidation. A non-ionic surfactant is necessary to prevent adsorption of adenovirus to glass surfaces during storage, and a cryoprotectant is needed to prevent freeze-thaw-induced virus inactivation. In a base formulation (A105) containing sucrose as the cryoprotectant and polysorbate-80 as the non-ionic surfactant, metal-ion catalyzed free-radical oxidation is an important mechanism of Ad5 inactivation. The free-radical oxidation inhibitors ethanol and histidine, combined with the metal-ion chelator ethylenediaminetetraacetic acid (EDTA), were determined to be effective stabilizers of Ad5. Arrhenius plots of stability data are consistent with a first-order inactivation mechanism with apparent activation energies for virus inactivation of 26.5 +/- 0.9 and 28.7 +/- 0.6 kcal/mol in the absence and presence of free-radical oxidation inhibitors, respectively. Optimization of formulation pH, as well as the EDTA and ethanol concentrations, allowed for the identification of formulations that further enhanced long-term storage stability. For example, Ad5 in an optimized liquid formulation (A195) lost <0.1 logs of infectivity after 24 months of storage at 4 degrees C. The immunogenicity of a recombinant Ad5-based human immunodeficiency virus (HIV) vaccine candidate expressing HIV-1 gag (MRKAd5gag) formulated in A195, was shown to be equivalent to the same vaccine formulated in A105. Therefore, the use of EDTA, ethanol, and histidine did not significantly alter the immunogenicity of the vaccine in mice. The identification of 4 degrees C stable liquid formulations should significantly enhance the utility of Ad5 as a vector for vaccines and gene therapy.


Subject(s)
Adenoviruses, Human/immunology , Viral Vaccines/chemistry , Adenoviruses, Human/genetics , Animals , Cell Line , Drug Stability , Drug Storage , Edetic Acid , Ethanol , Fluorescent Dyes , Histidine , Humans , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Organic Chemicals , Oxidation-Reduction , Pharmaceutical Solutions/chemistry , Polymerase Chain Reaction , Surface-Active Agents , Temperature , Time Factors , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Viral Vaccines/immunology
6.
J Pharm Sci ; 93(7): 1924-39, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15176079

ABSTRACT

We describe the physiochemical characterization and immunological evaluation of plasmid DNA vaccine formulations containing a nonionic triblock copolymer adjuvant (CRL1005) in the presence and absence of a cationic surfactant, benzalkonium chloride (BAK). CRL1005 forms particles of 1-10 microns upon warming above its phase-transition temperature (approximately 6-8 degrees C) and the physical properties of the particles are altered by BAK. DNA/CRL1005 vaccines formulated with and without BAK were evaluated in rhesus macaques to determine the effect of CRL1005 and BAK on the ability of plasmid DNA to induce a cellular immune response. Immunogenicity results indicate that the addition of CRL1005 to human immunodeficiency virus-1 gag plasmid DNA formulated in phosphate-buffered saline leads to an enhancement in the gag-specific cellular immune response. Moreover, the addition of BAK to human immunodeficiency virus-1 gag plasmid DNA/CRL1005 formulations produces an additional enhancement in gag-specific cellular immunity. In vitro characterization studies of DNA/CRL1005 formulations indicate no detectable binding of DNA to CRL1005 particles in the absence of BAK, suggesting that the enhancement of cellular immunity induced by DNA/CRL1005 formulations is not due to enhanced DNA delivery. In the presence of BAK, however, results indicate that BAK binds to CRL1005 particles, producing cationic microparticles that bind DNA through electrostatic interactions. If BAK is present at the phase-transition temperature, it reduces the particle size from approximately 2 microns to approximately 300 nm, presumably by binding to hydrophobic surfaces during particle formation. Zeta potential measurements indicate that the surface charge of CRL1005-BAK particles changes from positive to negative upon DNA binding, and DNA bound to the surface of CRL1005-BAK particles was visualized by fluorescence microscopy. These results indicate that the addition of BAK to DNA/CRL1005 formulations leads to the formation of approximately 300 nm CRL1005-BAK-DNA particles that enhance the cellular immune response in rhesus monkeys.


Subject(s)
Adjuvants, Pharmaceutic/chemistry , Microspheres , Plasmids/chemistry , Vaccines, DNA/chemistry , Adjuvants, Pharmaceutic/administration & dosage , Animals , Cattle , Chemistry, Pharmaceutical , Drug Evaluation, Preclinical/methods , Humans , Immunity, Cellular/immunology , Macaca mulatta , Particle Size , Plasmids/administration & dosage , Plasmids/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology
7.
J Virol ; 77(13): 7663-8, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12805466

ABSTRACT

The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8(+)-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed.


Subject(s)
AIDS Vaccines/immunology , Adenoviridae/genetics , Defective Viruses/genetics , Genes, gag , HIV-1/genetics , AIDS Vaccines/administration & dosage , Adenoviridae/immunology , Animals , Defective Viruses/immunology , Dose-Response Relationship, Immunologic , Papio , T-Lymphocytes/immunology
8.
J Virol ; 77(11): 6305-13, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12743287

ABSTRACT

Cellular immune responses, particularly those associated with CD3(+) CD8(+) cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defective adenovirus serotype 5 (Ad5) vector, each expressing the same codon-optimized HIV-1 gag gene for immunogenicity in rhesus monkeys. The DNA vaccines were formulated with and without one of two chemical adjuvants (aluminum phosphate and CRL1005). The Ad5-gag vector was the most effective in eliciting anti-Gag CTL. The vaccine produced both CD4(+) and CD8(+) T-cell responses, with the latter consistently being the dominant component. To determine the effect of existing antiadenovirus immunity on Ad5-gag-induced immune responses, monkeys were exposed to adenovirus subtype 5 that did not encode antigen prior to immunization with Ad5-gag. The resulting anti-Gag T-cell responses were attenuated but not abolished. Regimens that involved priming with different DNA vaccine formulations followed by boosting with the adenovirus vector were also compared. Of the formulations tested, the DNA-CRL1005 vaccine primed T-cell responses most effectively and provided the best overall immune responses after boosting with Ad5-gag. These results are suggestive of an immunization strategy for humans that are centered on use of the adenovirus vector and in which existing adenovirus immunity may be overcome by combined immunization with adjuvanted DNA and adenovirus vector boosting.


Subject(s)
AIDS Vaccines/immunology , Genes, gag/immunology , Genetic Vectors/immunology , HIV Infections/prevention & control , Vaccines, DNA/immunology , AIDS Vaccines/administration & dosage , Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Adjuvants, Immunologic , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Genes, gag/genetics , HIV Antibodies/blood , HIV Infections/immunology , HIV-1/immunology , Humans , Immunization , Macaca mulatta , Plasmids , Recombination, Genetic , Vaccinia virus/genetics , Vaccinia virus/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...