Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 245(Pt 2): 114902, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36403514

ABSTRACT

A series of new pyrimidine thioethers, recognized as the key intermediates in the synthesis of S-DABO antivirals, were prepared and evaluated both in vivo and in silico. The purpose of this evaluation was to find novel structural analogues of the known antihypoxic drug Isothiobarbamine endowed with improved pharmacological profile. The in vivo studies led to the identification of compounds 5c, 5e, and 5f endowed with antidepressant/anxiolytic, performance enhancing, and nootropic properties. Compounds 5c and 5f were further tested in mice affected by social depression and were able to increase motor and tentative search activity compared to control groups, along with higher interaction frequency and better results in a sucrose preference test. Overall, these data suggested a better psychoemotional state of the animals, treated with compounds 5c, and 5f. Moreover, 5c and 5f exhibited minimal acute toxicity, lower than Fluoxetine hydrochloride. Molecular modelling studies finally indicated the plausible biomolecular mechanism of action of compounds 5c, 5e, and 5f, which seem to bind GABA-A, melatonin, and sigma-1 receptors. Moreover, three-dimensional structure-activity relationships enabled to define a SAR model that will be of great utility for the design of further structurally optimized compounds of the above mentioned chemotype.


Subject(s)
Anti-Anxiety Agents , Nootropic Agents , Animals , Mice , Anti-Anxiety Agents/pharmacology , Sulfides , Antidepressive Agents/pharmacology , Pyrimidines
2.
ChemMedChem ; 17(12): e202100771, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35388614

ABSTRACT

In this work, a library of (+)-camphor and (-)-fenchone based N-acylhydrazones, amides, and esters, including para-substituted aromatic/hetaromatic/cyclohexane ring was synthesized, with potent orthopoxvirus inhibitors identified among them. Investigations of the structure-activity relationship revealed the significance of the substituent at the para-position of the aromatic ring. Also, the nature of the linker between a hydrophobic moiety and aromatic ring was clarified. Derivatives with p-Cl, p-Br, p-CF3, and p-NO2 substituted aromatic ring and derivatives with cyclohexane ring showed the highest antiviral activity against vaccinia virus, cowpox, and ectromelia virus. The hydrazone and the amide group were more favourable as a linker for antiviral activity than the ester group. Compounds 3 b and 7 e with high antiviral activity were examined using the time-of-addition assay and molecular docking study. The results revealed the tested compounds to inhibit the late processes of the orthopoxvirus replication cycle and the p37 viral protein to be a possible biological target.


Subject(s)
Orthopoxvirus , Antiviral Agents/chemistry , Camphanes , Camphor/pharmacology , Cyclohexanes , Molecular Docking Simulation , Norbornanes
3.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680072

ABSTRACT

Despite the fact that the variola virus is considered eradicated, the search for new small molecules with activity against orthopoxviruses remains an important task, especially in the context of recent outbreaks of monkeypox. As a result of this work, a number of amides of benzoic acids containing an adamantane fragment were obtained. Most of the compounds demonstrated activity against vaccinia virus, with a selectivity index SI = 18,214 for the leader compound 18a. The obtained derivatives also demonstrated activity against murine pox (250 ≤ SI ≤ 6071) and cowpox (125 ≤ SI ≤ 3036). A correlation was obtained between the IC50 meanings and the binding energy to the assumed biological target, the p37 viral protein with R2 = 0.60.


Subject(s)
Communicable Diseases , Orthopoxvirus , Variola virus , Mice , Animals , Amides/pharmacology , Vaccinia virus , Virus Replication
4.
J Med Chem ; 62(2): 604-621, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30525601

ABSTRACT

Conformational restriction applied to dihydrobenzylpyrimidin-4-(3 H)-ones (DABOs) by the intoduction of a methyl group at the α-benzylic position is known to massively improve the anti-HIV-1 activity of these compounds. Here, we report the effects of methoxy substitution at the α-benzylic position in S-, NH-, and N, N-DABOs carrying 2,6-difluoro, 2-chloro-6-fluoro, or 2,6-dichloro substituted benzyl moieties. The various α-methoxy DABO series (12-14) present different SAR at the dihalo benzyl substitution, with the most potent compounds (12d,e and 13c) showing similar (picomolar/nanomolar) anti-HIV-1 potency as the corresponding α-methyl analogues against wt HIV-1, and 10-100-fold increased potency (up to low nanomolar) against clinically relevant K103N, Y181C, Y188L, IRLL98, and K103N+Y181C HIV-1 mutant strains, highlighting the importance of the α-methoxy substitution to provide highly efficient DABOs as "second generation" NNRTIs. HPLC enantioseparation of three of the most potent derivatives (12d, 13c, and 14c) provided single enantiomers with significant enantioselectivity in HIV-1 inhibition. Computational studies allowed to correlate the best antiviral activity with the ( R) absolute configuration at the α-methoxy stereogenic center.


Subject(s)
Anti-HIV Agents/chemistry , Pyrimidinones/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Binding Sites , Cell Line , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/genetics , Humans , Molecular Docking Simulation , Mutation , Protein Structure, Tertiary , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Stereoisomerism , Structure-Activity Relationship
5.
Eur J Med Chem ; 155: 946-960, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30015253

ABSTRACT

The release of pro-inflammatory mediators, such as prostaglandines (PGs) and leukotrienes (LTs), arising from the arachidonic acid (AA) cascade, play a crucial role in initiating, maintaining, and regulating inflammatory processes. New dual inhibitors of 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1), that block, at the same time, the formation of PGE2 and LTs, are currently emerged as a highly interesting drug candidates for better pharmacotherapie of inflammation-related disorders. Following our previous studies, we here performed a detailed structure-based design of benzo[g]indol-3-carboxylate derivatives, disclosing several new key factors that affect both enzyme activity. Ethyl 2-(3,4-dichlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (4b, RAF-01) and ethyl 2-(3,4-dichlorophenyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (7h, RAF-02) emerged as the most active compounds of the series. Additionally, together with selected structure based analogues, both derivatives displayed significant in vivo anti-inflammatory properties. In conclusion, modeling and experimental studies lead to the discovery of new candidate compounds prone to further developments as multi-target inhibitors of the inflammatory pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Edema/drug therapy , Indoles/pharmacology , Inflammation/drug therapy , Lipoxygenase Inhibitors/pharmacology , Prostaglandin-E Synthases/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan/administration & dosage , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Inflammation/metabolism , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Male , Mice , Mice, Inbred ICR , Molecular Structure , Neutrophils/drug effects , Neutrophils/metabolism , Prostaglandin-E Synthases/metabolism , Structure-Activity Relationship
6.
J Med Chem ; 57(12): 5212-25, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24933420

ABSTRACT

A comparison of the effects of the 6-(2-chloro-6-fluorobenzyl)-2-(alkylthio)pyrimidin-4(3H)-ones (2-Cl-6-F-S-DABOs) 7-12 and the related 6-(2,6-difluorobenzyl) counterparts 13-15 in HIV-1 infected cells and in the HIV-1 reverse transcriptase (RT) assays is here described. The new 2-Cl-6-F-S-DABOs showed up to picomolar activity against wt HIV-1. Against clinically relevant HIV-1 mutants and in enzyme assays, the simultaneous C5(methyl)/C6(methyl/ethyl) substitution in the 2-Cl-6-F- and 2,6-F2-benzyl series furnished compounds with the highest, wide-spectrum inhibitory activity against HIV-1. Three representative 2-Cl-6-F-S-DABOs carrying two (9c, 10c) or one (10a) stereogenic centers were resolved into their individual stereoisomers and showed a significant diastereo- and enantioselectivity in HIV-1 inhibition, the highest antiviral activity well correlating with the R absolute configuration to the stereogenic center of the C6-benzylic position in both cellular and enzymatic tests. Application of previously reported COMBINEr protocol on 9c and 10c confirmed the influence of the stereogenic centers on their binding modes in the HIV-1 RT.


Subject(s)
Anti-HIV Agents/chemical synthesis , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Pyrimidinones/chemical synthesis , Reverse Transcriptase Inhibitors/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Cell Line , Drug Resistance, Viral , HIV Reverse Transcriptase/genetics , HIV-1/enzymology , HIV-1/genetics , Humans , Models, Molecular , Mutation , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship
7.
J Med Chem ; 55(7): 3558-62, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22428851

ABSTRACT

The single enantiomers of two pyrimidine-based HIV-1 non-nucleoside reverse transcriptase inhibitors, 1 (MC1501) and 2 (MC2082), were tested in both cellular and enzyme assays. In general, the R forms were more potent than their S counterparts and racemates and (R)-2 was more efficient than (R)-1 and the reference compounds, with some exceptions. Interestingly, (R)-2 displayed a faster binding to K103N RT with respect to WT RT, while (R)-1 showed the opposite behavior.


Subject(s)
Anti-HIV Agents/chemistry , Benzene Derivatives/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Pyrimidinones/chemistry , Anti-HIV Agents/pharmacology , Benzene Derivatives/pharmacology , Cell Line , Enzyme Assays , HIV Reverse Transcriptase/chemistry , HIV-1/genetics , Humans , Kinetics , Models, Molecular , Mutation , Pyrimidinones/pharmacology , Stereoisomerism , Structure-Activity Relationship
8.
J Med Chem ; 54(8): 3091-6, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21438533

ABSTRACT

Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/drug effects , Pyrimidines/pharmacology , Anti-HIV Agents/chemistry , Pyrimidines/chemistry
9.
J Med Chem ; 51(15): 4641-52, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18630898

ABSTRACT

A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Benzene/chemistry , Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Sulfur Compounds/chemical synthesis , Sulfur Compounds/pharmacology , Alkylation , Anti-HIV Agents/chemistry , Chemical Phenomena , Chemistry, Physical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Hydrogen/chemistry , Models, Molecular , Molecular Structure , Mutation/genetics , Oxygen/chemistry , Protein Binding , Pyrimidinones/chemistry , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Structure-Activity Relationship , Sulfur Compounds/chemistry
10.
J Med Chem ; 50(22): 5412-24, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17910429

ABSTRACT

Following the disclosure of dihydro-alkoxy-, dihydro-alkylthio-, and dihydro-alkylamino-benzyl-oxopyrimidines (DABOs, S-DABOs, and NH-DABOs) as potent and selective anti-HIV-1 agents belonging to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class, we report here the synthesis and biological evaluation of a novel series of DABOs bearing a N,N-disubstituted amino group or a cyclic amine at the pyrimidine-C2 position, a hydrogen atom or a small alkyl group at C5 and/or at the benzylic position, and the favorable 2,6-difluorobenzyl moiety at the C6 position (F2-N,N-DABOs). The new compounds were highly active up to the subnanomolar level against both wt HIV-1 and the Y181C mutant and at the submicromolar to nanomolar range against the K103N and Y188L mutant strains. Such derivatives were more potent than S-DABOs, NH-DABOs, and nevirapine and efavirenz were chosen as reference drugs. The higher inhibitor adaptability to the HIV-1 RT non-nucleoside binding site (NNBS) may account for the higher inhibitory effect exerted by the new molecules against the mutated RTs.


Subject(s)
Anti-HIV Agents/chemical synthesis , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Pyrimidines/chemical synthesis , Reverse Transcriptase Inhibitors/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Cell Line , Drug Resistance, Viral , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/isolation & purification , Humans , Models, Molecular , Mutation , Protein Binding , Pyrimidines/chemistry , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...