Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant J ; 105(4): 1083-1097, 2021 02.
Article in English | MEDLINE | ID: mdl-33222335

ABSTRACT

Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.


Subject(s)
Ammonium Compounds/metabolism , Arabidopsis/metabolism , Microautophagy , Plant Roots/metabolism , Arabidopsis/physiology , Autophagosomes/metabolism , Autophagosomes/physiology , Plant Roots/physiology , Stress, Physiological
2.
Plant Physiol ; 182(3): 1284-1296, 2020 03.
Article in English | MEDLINE | ID: mdl-31941669

ABSTRACT

Zinc (Zn) is an essential micronutrient for plant growth. Accordingly, Zn deficiency (-Zn) in agricultural fields is a serious problem, especially in developing regions. Autophagy, a major intracellular degradation system in eukaryotes, plays important roles in nutrient recycling under nitrogen and carbon starvation. However, the relationship between autophagy and deficiencies of other essential elements remains poorly understood, especially in plants. In this study, we focused on Zn due to the property that within cells most Zn is tightly bound to proteins, which can be targets of autophagy. We found that autophagy plays a critical role during -Zn in Arabidopsis (Arabidopsis thaliana). Autophagy-defective plants (atg mutants) failed to grow and developed accelerated chlorosis under -Zn. As expected, -Zn induced autophagy in wild-type plants, whereas in atg mutants, various organelle proteins accumulated to high levels. Additionally, the amount of free Zn2+ was lower in atg mutants than in control plants. Interestingly, -Zn symptoms in atg mutants recovered under low-light, iron-limited conditions. The levels of hydroxyl radicals in chloroplasts were elevated, and the levels of superoxide were reduced in -Zn atg mutants. These results imply that the photosynthesis-mediated Fenton-like reaction, which is responsible for the chlorotic symptom of -Zn, is accelerated in atg mutants. Together, our data indicate that autophagic degradation plays important functions in maintaining Zn pools to increase Zn bioavailability and maintain reactive oxygen species homeostasis under -Zn in plants.


Subject(s)
Arabidopsis/metabolism , Autophagy/physiology , Reactive Oxygen Species/metabolism , Zinc/deficiency , Zinc/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant
3.
Front Plant Sci ; 6: 587, 2015.
Article in English | MEDLINE | ID: mdl-26284103

ABSTRACT

Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43-50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a foundation for evaluating the individual roles of miRNAs in the response of common bean nodules to Alt.

4.
Plant Cell Physiol ; 55(4): 715-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24566535

ABSTRACT

Autophagy is a degradation pathway that recycles cell materials upon encountering stress conditions or during specific developmental processes. To better understand the physiological roles of autophagy, proper monitoring methods are very important. In mammals and yeast, monitoring of autophagy is often performed with a green fluorescent protein (GFP)-ATG8 fusion protein or with acidotropic dyes such as monodansylcadaverine (MDC) and LysoTracker Red (LTR). To evaluate these monitoring methods, here we examined these systems by inducing autophagy in Arabidopsis thaliana roots as a model for monitoring autophagy in planta. Under carbon- and nitrogen-starved conditions, the number and size of vesicles labeled by GFP-ATG8 was increased for several hours and then gradually decreased to a level higher than that observed before the start of the experiment. We also observed the disappearance of GFP-ATG8-labeled vesicles after treatment with wortmannin, a phosphatidylinositol 3-kinase inhibitor known as an autophagy inhibitor, showing that the GFP-ATG8 transgenic line constitutes an excellent method for monitoring autophagy. These data were compared with plants stained with MDC and LTR. There was no appreciable MDC/LTR staining of small organelles in the root under the induction of autophagy. Some vesicles were eventually observed in the root tip only, but co-localization experiments, as well as experiments with autophagy-deficient atg mutants, provided the evidence that these structures were located in the vacuole and were not manifestly autophagosomes and/or autolysosomes. Extreme caution should therefore be used when monitoring autophagy with the aid of MDC/LTR. Additionally, our observations strongly suggest that autophagosomes fuse directly to vacuoles in Arabidopsis roots.


Subject(s)
Arabidopsis/cytology , Autophagy , Cytological Techniques/methods , Membrane Fusion , Phagosomes/metabolism , Plant Roots/cytology , Vacuoles/metabolism , Amines/metabolism , Androstadienes/pharmacology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Autophagy/drug effects , Cadaverine/analogs & derivatives , Cadaverine/metabolism , Green Fluorescent Proteins/metabolism , Kinetics , Leucine/analogs & derivatives , Leucine/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Fusion/drug effects , Phagosomes/drug effects , Plant Cells/drug effects , Plant Cells/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins/metabolism , Staining and Labeling , Nicotiana/cytology , Vacuoles/drug effects , Wortmannin
5.
PLoS One ; 9(1): e84416, 2014.
Article in English | MEDLINE | ID: mdl-24400089

ABSTRACT

MicroRNAs are recognized as important post-transcriptional regulators in plants. Information about the roles of miRNAs in common bean (Phaseolus vulgaris L.), an agronomically important legume, is yet scant. The objective of this work was to functionally characterize the conserved miRNA: miR398b and its target Cu/Zn Superoxide Dismutase 1 (CSD1) in common bean. We experimentally validated a novel miR398 target: the stress up-regulated Nodulin 19 (Nod19). Expression analysis of miR398b and target genes -CSD1 and Nod19- in bean roots, nodules and leaves, indicated their role in copper (Cu) homeostasis. In bean plants under Cu toxicity miR398b was decreased and Nod19 and CSD1, that participates in reactive oxygen species (ROS) detoxification, were up-regulated. The opposite regulation was observed in Cu deficient bean plants; lower levels of CSD1 would allow Cu delivery to essential Cu-containing proteins. Composite common bean plants with transgenic roots over-expressing miR398 showed ca. 20-fold higher mature miR398b and almost negligible target transcript levels as well as increased anthocyanin content and expression of Cu-stress responsive genes, when subjected to Cu deficiency. The down-regulation of miR398b with the consequent up-regulation of its targets was observed in common bean roots during the oxidative burst resulting from short-time exposure to high Cu. A similar response occurred at early stage of bean roots inoculated with Rhizobium tropici, where an increase in ROS was observed. In addition, the miR398b down-regulation and an increase in CSD1 and Nod19 were observed in bean leaves challenged with Sclerotinia scleortiorum fungal pathogen. Transient over-expression of miR398b in Nicotiana benthamiana leaves infected with S. sclerotiorum resulted in enhanced fungal lesions. We conclude that the miR398b-mediated up-regulation of CSD and Nod19 is relevant for common bean plants to cope with oxidative stress generated in abiotic and biotic stresses.


Subject(s)
Copper/metabolism , Fabaceae/physiology , Gene Expression Regulation, Plant , Homeostasis , MicroRNAs/genetics , MicroRNAs/chemistry , Phenotype , Reactive Oxygen Species
6.
Plant Signal Behav ; 5(3): 328-31, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20200496

ABSTRACT

Micro RNAs (miRNAs) have emerged as an important class of gene expression regulators controlling development, growth and metabolism. These short RNA molecules are 20-24 nucleotides in length and act post-transcriptionally to regulate the cleavage or translation of specific mRNA targets. In the model legume Medicago truncatula, we have recently reported identification of 100 novel and 27 conserved miRNAs in root apexes and nodules. Statistical analysis on sequencing results revealed specific miRNA isoforms for the same family (up to 3 mismatches) showing contrasting expression patterns between these tissues. Here, we report the cleavage of a non-conserved target of miR156 in root apexes complementary to a differentially expressed miR156 isoform. This suggests that changes in the abundance of miRNA isoforms may have functional consequences on the post-transcriptional regulation of new mRNA targets in different organs.

7.
Plant Cell ; 21(9): 2780-96, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19767456

ABSTRACT

Posttranscriptional regulation of a variety of mRNAs by small 21- to 24-nucleotide RNAs, notably the microRNAs (miRNAs), is emerging as a novel developmental mechanism. In legumes like the model Medicago truncatula, roots are able to develop a de novo meristem through the symbiotic interaction with nitrogen-fixing rhizobia. We used deep sequencing of small RNAs from root apexes and nodules of M. truncatula to identify 100 novel candidate miRNAs encoded by 265 hairpin precursors. New atypical precursor classes producing only specific 21- and 24-nucleotide small RNAs were found. Statistical analysis on sequencing reads abundance revealed specific miRNA isoforms in a same family showing contrasting expression patterns between nodules and root apexes. The differentially expressed conserved and nonconserved miRNAs may target a large variety of mRNAs. In root nodules, which show diverse cell types ranging from a persistent meristem to a fully differentiated central region, we discovered miRNAs spatially enriched in nodule meristematic tissues, vascular bundles, and bacterial infection zones using in situ hybridization. Spatial regulation of miRNAs may determine specialization of regulatory RNA networks in plant differentiation processes, such as root nodule formation.


Subject(s)
Genome, Plant , Medicago truncatula/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Root Nodules, Plant/genetics , Chromosome Mapping , Comparative Genomic Hybridization , Gene Expression Profiling , Gene Expression Regulation, Plant , Meristem/genetics , Plant Roots/genetics , RNA Processing, Post-Transcriptional , Sequence Analysis, RNA
8.
New Phytol ; 181(1): 103-114, 2009.
Article in English | MEDLINE | ID: mdl-18826485

ABSTRACT

Despite the multiple roles played by antioxidants in rhizobia-legume symbioses, little is known about glutathione peroxidases (GPXs) in legumes. Here the characterization of six GPX genes of Lotus japonicus is reported. Expression of GPX genes was analysed by quantitative reverse transcription-polymerase chain reaction in L. japonicus and Lotus corniculatus plants exposed to various treatments known to generate reactive oxygen and/or nitrogen species. LjGPX1 and LjGPX3 were the most abundantly expressed genes in leaves, roots and nodules. Compared with roots, LjGPX1 and LjGPX6 were highly expressed in leaves and LjGPX3 and LjGPX6 in nodules. In roots, salinity decreased GPX4 expression, aluminium decreased expression of the six genes, and cadmium caused up-regulation of GPX3, GPX4 and GPX5 after 1 h and down-regulation of GPX1, GPX2, GPX4 and GPX6 after 3-24 h. Exposure of roots to sodium nitroprusside (a nitric oxide donor) for 1 h increased the mRNA levels of GPX4 and GPX6 by 3.3- and 30-fold, respectively. Thereafter, the GPX6 mRNA level remained consistently higher than that of the control. Immunogold labelling revealed the presence of GPX proteins in root and nodule amyloplasts and in leaf chloroplasts of L. japonicus and other legumes. Labelling was associated with starch grains. These results underscore the differential regulation of GPX expression in response to cadmium, aluminium and nitric oxide, and strongly support a role for GPX6 and possibly other GPX genes in stress and/or metabolic signalling.


Subject(s)
Gene Expression , Genes, Plant , Glutathione Peroxidase/genetics , Lotus/enzymology , Adaptation, Biological/genetics , Amino Acid Sequence , Fabaceae , Gene Expression Regulation, Plant , Glutathione Peroxidase/metabolism , Immunoblotting , Lotus/ultrastructure , Molecular Sequence Data , Multigene Family , RNA, Messenger/metabolism
9.
Plant Physiol ; 148(1): 536-45, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18614711

ABSTRACT

In plants and many other organisms, phytochelatin synthase (PCS) catalyzes the synthesis of phytochelatins from glutathione in the presence of certain metals and metalloids. We have used budding yeast (Saccharomyces cerevisiae) as a heterologous system to characterize two PCS proteins, LjPCS1 and LjPCS3, of the model legume Lotus japonicus. Initial experiments revealed that the metal tolerance of yeast cells in vivo depends on the concentrations of divalent cations in the growth medium. Detailed in vivo (intact cells) and in vitro (broken cells) assays of PCS activity were performed with yeast expressing the plant enzymes, and values of phytochelatin production for each metal tested were normalized with respect to those of cadmium to correct for the lower expression level of LjPCS3. Our results showed that lead was the best activator of LjPCS1 in the in vitro assay, whereas, for both assays, arsenic, iron, and aluminum were better activators of LjPCS3 and mercury was similarly active with the two enzymes. Most interestingly, zinc was a powerful activator, especially of LjPCS3, when assayed in vivo, whereas copper and silver were the strongest activators in the in vitro assay. We conclude that the in vivo and in vitro assays are useful and complementary to assess the response of LjPCS1 and LjPCS3 to a wide range of metals and that the differences in the C-terminal domains of the two proteins are responsible for their distinct expression levels or stabilities in heterologous systems and patterns of metal activation.


Subject(s)
Aminoacyltransferases/metabolism , Lotus/enzymology , Metals, Heavy/metabolism , Aminoacyltransferases/genetics , Culture Media , Enzyme Activation , Lotus/genetics , Phytochelatins/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
10.
Plant Physiol ; 144(2): 1104-14, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17468213

ABSTRACT

Alfalfa (Medicago sativa) plants were exposed to drought to examine the involvement of carbon metabolism and oxidative stress in the decline of nitrogenase (N(2)ase) activity. Exposure of plants to a moderate drought (leaf water potential of -1.3 MPa) had no effect on sucrose (Suc) synthase (SS) activity, but caused inhibition of N(2)ase activity (-43%), accumulation of succinate (+36%) and Suc (+58%), and up-regulation of genes encoding cytosolic CuZn-superoxide dismutase (SOD), plastid FeSOD, cytosolic glutathione reductase, and bacterial MnSOD and catalases B and C. Intensification of stress (-2.1 MPa) decreased N(2)ase (-82%) and SS (-30%) activities and increased malate (+40%), succinate (+68%), and Suc (+435%). There was also up-regulation (mRNA) of cytosolic ascorbate peroxidase and down-regulation (mRNA) of SS, homoglutathione synthetase, and bacterial catalase A. Drought stress did not affect nifH mRNA level or leghemoglobin expression, but decreased MoFe- and Fe-proteins. Rewatering of plants led to a partial recovery of the activity (75%) and proteins (>64%) of N(2)ase, a complete recovery of Suc, and a decrease of malate (-48%) relative to control. The increase in O(2) diffusion resistance, the decrease in N(2)ase-linked respiration and N(2)ase proteins, the accumulation of respiratory substrates and oxidized lipids and proteins, and the up-regulation of antioxidant genes reveal that bacteroids have their respiratory activity impaired and that oxidative stress occurs in nodules under drought conditions prior to any detectable effect on SS or leghemoglobin. We conclude that a limitation in metabolic capacity of bacteroids and oxidative damage of cellular components are contributing factors to the inhibition of N(2)ase activity in alfalfa nodules.


Subject(s)
Antioxidants/metabolism , Glucosyltransferases/metabolism , Medicago sativa/metabolism , Nitrogenase/metabolism , Root Nodules, Plant/metabolism , Water/physiology , Adaptation, Physiological , Carbohydrate Metabolism , Carbon/metabolism , Cell Respiration , Lipid Peroxidation/physiology , Medicago sativa/enzymology , Medicago sativa/physiology , Plant Proteins/metabolism , Sinorhizobium meliloti/enzymology
11.
Plant Physiol ; 143(3): 1110-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17208961

ABSTRACT

The biosynthesis of phytochelatins and homophytochelatins has been studied in nodulated plants of the model legume Lotus (Lotus japonicus). In the first 6 to 24 h of treatment with cadmium (Cd), roots started to synthesize elevated amounts of both polypeptides, with a concomitant increase of glutathione and a decrease of homoglutathione, indicating the presence of active phytochelatin synthase (PCS) genes. Screening of transformation-competent artificial chromosome libraries allowed identification of a cluster of three genes, LjPCS1, LjPCS2, and LjPCS3, which were mapped at 69.0 cM on chromosome 1. The genes differ in exon-intron composition and responsiveness to Cd. Gene structures and phylogenetic analysis of the three protein products, LjPCS1-8R, LjPCS2-7N, and LjPCS3-7N, are consistent with two sequential gene duplication events during evolution of vascular plants. Two sites for alternative splicing in the primary transcripts were identified. One of them, involving intron 2 of the LjPCS2 gene, was confirmed by the finding of the two predicted mRNAs, encoding LjPCS2-7R in roots and LjPCS2-7N in nodules. The amino acid sequences of LjPCS2-7R (or LjPCS2-7N) and LjPCS3-7N share 90% identity, but have only 43% to 59% identity with respect to the typical PCS1 enzymes of Lotus and other plants. The unusual LjPCS2-7N and LjPCS3-7N proteins conferred Cd tolerance when expressed in yeast (Saccharomyces cerevisiae) cells, whereas the alternatively spliced form, LjPCS2-7R, differing only in a five-amino acid motif (GRKWK) did not. These results unveil complex regulatory mechanisms of PCS expression in legume tissues in response to heavy metals and probably to other developmental and environmental factors.


Subject(s)
Aminoacyltransferases/metabolism , Cadmium/pharmacology , Lotus/enzymology , Alternative Splicing , Amino Acid Sequence , Aminoacyltransferases/genetics , Chromosome Mapping , Gene Duplication , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Lotus/drug effects , Lotus/genetics , Molecular Sequence Data , Multigene Family , Phylogeny , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/genetics , Protein Isoforms/metabolism , Saccharomyces cerevisiae/genetics , Sequence Alignment
12.
Plant Physiol ; 140(4): 1213-21, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16489135

ABSTRACT

Phytochelatin synthases (PCS) catalyze phytochelatin (PC) synthesis from glutathione (GSH) in the presence of certain metals. The resulting PC-metal complexes are transported into the vacuole, avoiding toxic effects on metabolism. Legumes have the unique capacity to partially or completely replace GSH by homoglutathione (hGSH) and PCs by homophytochelatins (hPCs). However, the synthesis of hPCs has received little attention. A search for PCS genes in the model legume Lotus (Lotus japonicus) resulted in the isolation of a cDNA clone encoding a protein (LjPCS1) highly homologous to a previously reported homophytochelatin synthase (hPCS) of Glycine max (GmhPCS1). Recombinant LjPCS1 and Arabidopsis (Arabidopsis thaliana) PCS1 (AtPCS1) were affinity purified and their polyhistidine-tags removed. AtPCS1 catalyzed hPC synthesis from hGSH alone at even higher rates than did LjPCS1, indicating that GmhPCS1 is not a genuine hPCS and that a low ratio of hPC to PC synthesis is an inherent feature of PCS1 enzymes. For both enzymes, hGSH is a good acceptor, but a poor donor, of gamma-glutamylcysteine units. Purified AtPCS1 and LjPCS1 were activated (in decreasing order) by Cd2+, Zn2+, Cu2+, and Fe3+, but not by Co2+ or Ni2+, in the presence of 5 mm GSH and 50 microm metal ions. Activation of both enzymes by Fe3+ was proven by the complete inhibition of PC synthesis by the iron-specific chelator desferrioxamine. Plants of Arabidopsis and Lotus accumulated (h)PCs only in response to a large excess of Cu2+ and Zn2+, but to a much lower extent than did with Cd2+, indicating that (h)PC synthesis does not significantly contribute in vivo to copper, zinc, and iron detoxification.


Subject(s)
Aminoacyltransferases/metabolism , Arabidopsis Proteins/metabolism , Metals, Heavy/pharmacology , Plant Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Enzyme Activation , Lotus/enzymology , Lotus/genetics , Phylogeny , Recombinant Proteins/isolation & purification , Sequence Analysis, Protein , Glycine max/enzymology , Glycine max/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...